
1

Algorithmic Trading of Cryptocurrency
Based on Twitter Sentiment Analysis

Stuart Colianni, Stephanie Rosales, and Michael Signorotti

F

1 ABSTRACT

PAST research has shown that real-time Twitter data can
be used to predict market movement of securities and

other financial instruments [1]. The goal of this paper is
to prove whether Twitter data relating to cryptocurren-
cies can be utilized to develop advantageous crypto coin
trading strategies. By way of supervised machine learning
techniques, our team will outline several machine learning
pipelines with the objective of identifying cryptocurrency
market movement. The prominent alternative currency ex-
amined in this paper is Bitcoin (BTC). Our approach to
cleaning data and applying supervised learning algorithms
such as logistic regression, Naive Bayes, and support vec-
tor machines leads to a final hour-to-hour and day-to-day
prediction accuracy exceeding 90%. In order to achieve this
result, rigorous error analysis is employed in order to ensure
that accurate inputs are utilized at each step of the model.
This analysis yields a 25% accuracy increase on average.

2 INTRODUCTION

Cryptocurrency is an alternative medium of exchange
consisting of numerous decentralized crypto coin types.
The essence of each crypto coin is in its cryptographic
foundation. Secure peer to peer transactions are enabled
through cryptography in this secure and decentralized
exchange network. Since its inception in 2009, the Bitcoin
has become a digital commodity of interest as some believe
the crypto coins’ worth is comparable to that of traditional
fiat currency.

Considering the exchange rates of cryptocurrencies are
notorious for being volatile, our team strives to develop an
effective trading strategy that can be applied to a variety of
cryptocurrencies. Our method for determining the optimal
time to trade involves correlating prices with one of today’s
most popular social media sources, Twitter. The advantages
of using Twitter include having access to some of the
earliest and fastest news updates in a concise format as well
as being able to extract data from this social media platform
with relative ease.

Our trading strategy applies supervised machine learning
algorithms including support vector machines, logistic re-
gression, and Naive Bayes to determine whether the price of
a particular digital currency will increase or decrease within
a predetermined time interval. The two approaches for

training these classifiers involve using direct text, otherwise
known as tweets, from Twitter users and using third party
open-source sentiment analysis APIs to rate the positivity
and negativity of words within each post. Both of these
training methods prove to be effective in estimating the tra-
jectory of cryptocurrency prices. In order to predict market
movement to a particular granularity, a time series of tweets
equal in length to the trading period is required one cycle
beforehand. This time series of Twitter posts is used as an
input to the classifiers.

3 RELATED WORK

Applying machine learning to cryptocurrency is a relatively
new field with limited research efforts. Using Bayesian
regression, Shah et al. achieved an 89% return on investment
over fifty days of buying and selling Bitcoins [8]. Another
approach predicted the price change of Bitcoin using
random forests with 98.7% accuracy [4]. These approaches
fail to consider the feelings of individuals about Bitcoin,
and therefore, fail to harness these potential features in their
learning algorithms. Twitter sentiment analysis has been
widely researched. Bollen et al. utilized the Profile of Mood
States (POMS) to predict the movement of the Dow Jones
Industrial Average with 87.6% accuracy. Go et. al focused
only on classifying tweets and used several approaches
to achieve an accuracy of 84.2% with Multinomial Naive
Bayes, 79.2% with maximum entropy, and 82.9% using a
support vector machine [2]. This paper will expand on the
approaches of researches in the past and apply Twitter
text classification and sentiment analysis to cryptocurrency
markets.

4 DATA

In order to create a training and testing data set for the
learning algorithms, we utilize Tweepy - an open-source
Python library for accessing the Twitter API [10]. The
keyword,bitcoin, is searched in real time and tweets
containing this token is placed into a text file. Additional
data being collected for each post containing the keyword
includes the user ID, a unique identifier which cannot
be changed, and a time stamp. In addition, the prices
of the cryptocurrency is collected every hour via the
cryptonator.com API and placed into text files to create a



2

price history [6].

While tweets are collected in real time, excess white space
is removed and the text is changed to lowercase. To clean
the data, the following procedure is carried out. The
first step is to remove all non-alphabetic characters. The
second step is to remove duplicates. The reason for doing
this is because of the prevalence of Twitter bots, many
of which instantaneously disseminate tweets containing
particular keywords. Not removing these tweets will cause
the distribution of words in our training set to be skewed.
Invalid English words which remain are identified and
removed based on not having membership in the ”words”
corpus of the Natural Language Toolkit [5]. Stop words are
subsequently removed from tweets based on membership
in the ”stopwords” corpus of the Natural Language Toolkit.
We then create two data sets: one with stemming and
one without. In the stemming set, all remaining words
are stemmed using the Porter Stemming algorithm. Then,
entries which no longer contain words are removed from
the data set.

The duration of the data collection process was 463 hours
spanning over twenty-one days. During this period, over 1
million tweets pertaining solely to Bitcoin were collected.
The processed data set consists of over 350,000 individuals
who posted at least once about Bitcoin. The distribution of
the number of Bitcoin related tweets per user is exhibited in
Figure 1. Please note that the x axis is in log scale due to the
large variance in tweets per user.

Fig. 1. The number of Bitcoin related tweets per user is displayed above.
The x axis is in log scale. The data was collected from November 15,
2015 to December 4, 2015.

As displayed in Figure 1, the majority of individuals
contributed only a few times throughout the data collection
period. Although some users tweet far more than others,
the individuals with the most posts only contribute to a
fraction of the 1 million tweet data set. Half of all users who
posted at least one tweet about Bitcoin only tweeted once
about the digital currency.

In order to ensure accurate prediction results across all days,
it is important to consider whether the number of data
points each day is fairly consistent. Figure 2, which displays
the number of tweets that mention Bitcoin per day, proves
the posting frequency for this particular class of tweet is
relatively uniform.

Fig. 2. The above chart shows the number of Bitcoin related tweets per
day from November 15, 2015 to December 3, 2015. The dates included
are limited to days with continuous data collection.

5 METHOD

In order to determine digital currency market movement
with the Twitter data set, text classification and sentiment
analysis algorithms are utilized. The goal of each algorithm
is to predict whether the price of Bitcoin will increase or
decrease over a set time frame. For the text classification
approach, the implementations of Naive Bayes, logistic
regression, and support vector machines in the Scikit Python
library are utilized [7]. Training and testing on sentiment
analysis data requires the same implementation of support
vector machines and logistic regression. Although both
types of algorithms are trained on the same data set, the
fundamental approaches to formatting each model’s feature
vector is quite different.

5.1 Feature Vectors

For the examples below, suppose that we wish to reconstruct
the processed version of the following tweet into a feature
vector (without the removal of stop words).

Bitcoin has a bright future in the world’s economy.

The features for text classification consist of a vector of
all unique words in the data set lexicon. Since the vector
encompasses all possible unique entries, it is sparse even
for the longest of tweets. Suppose that there are n words in
the learning algorithm’s vocabulary. An example of a text
classification feature vector for this model with each entry x
∈ {0, 1}n is as follows.



3

x =



0
...
1
...
1
...
1
...
0
...
1
...
0



=



0
...

bright
...

economy
...

future
...
0
...

worlds
...
0


When a particular word is observed at least once, a binary
value of one is recorded in the position of that word in
the feature vector. When the total count of each word is
represented in the same format of feature vector, the input
is modeled as multinomial rather than Bernoulli. Therefore,
the entries in a multinomial feature vector will take on
values x ∈ {1, 2, ...k}n.

Training and testing feature vectors for sentiment analysis
models are fundamentally different. In order to generate
feature vectors of this structure, preprocessed tweets are
analyzed word-by-word in the text-processing.com API [9].
This API returns scores between zero and one for words’
positivity, negativity, and neutrality. These scores are aggre-
gated into a single vector similar to the one below.

x =

0.800.76
.20



5.2 Naive Bayes
The Naive Bayes is a generative learning algorithm which
is commonly applied to text classification and sentiment
analysis machine learning problems. This approach to text
classification utilizes the first format of feature vector where
the appearance of a word is modeled by either the Bernoulli
or multinomial distribution. In both versions of this algo-
rithm, we assume the xi variable given Y in the Naive Bayes
mathematical program below to be conditionally indepen-
dent of one another.

argmax
yj

P (Y = yj)

m∏
i=1

P (xi|Y = yj)

In this formulation, yj represents the classification of
whether the Bitcoin price is increasing or decreasing over
a predetermined time interval. The variable xi is the feature
vector for tweet i where a total of m tweets are collected.
Since this is a generative learning algorithm, a model can be

built for both positive and negative variation in the market.
For each observation in the training set, the above product
of probabilities is calculated assuming each market trend,
and the results are compared. The classification resulting
in the higher probability is assumed true and subsequently
assigned to that particular post.

5.3 Logistic Regression

Discriminative learning algorithms such as logistic regres-
sion are also useful in the field of text classification and
sentiment analysis. Unlike generative learning algorithms,
this model examines two classes in the training set and
determines the best separation. The logistic regression learn-
ing algorithm can be derived by maximizing the following
likelihood function.

L(θ) =

m∏
i=1

(hθ(x
(i)))y

(i)

(1− hθ(x(i)))1−y
(i)

In this likelihood function, x(i) takes the form of either
of the previously mentioned feature vectors. The index, i,
maps the feature vector to one of the observations in the
training set of size m. The exponent, y(i), represents the
state of the market for feature vector i. The function hθ is
the sigmoid function below.

g(z) =
1

1 + exp−z

In order to determine an update rule for the parameters,
theta, the log likelihood function can be formulated. This
function can then be differentiated in order to derive the
stochastic gradient ascent formula below.

θj := θj + α(y(i) − hθ(x(i)))x(i)j

After reaching convergence, the parameters, theta, are uti-
lized in the sigmoid function in order to classify the state of
the digital currency market.

5.4 Support Vector Machines

Support vector machines are supervised learning algorithms
that can perform nonlinear classifications by mapping data
to higher dimensions through the use of the kernel trick.
Support vector machines are an effective tool in sentiment
analysis as proven by Go [2]. The L1 Norm Soft Margin
model below can be trained with either the text classification
feature vector or the sentiment analysis feature vector.

min
1

2
‖w‖22 + C

m∑
i=1

ξi

s.t. y(i)(wTx(i) + b) ≥ 1− ξi i = 1, ...,m

ξi ≥ 0 i = 1, ...,m



4

This support vector machine has the L1 norm soft margin
formulation which includes a penalty term for points which
are not linearly separable. This penalty term for this model
is below.

C

m∑
i=1

ξi

The term, ξi, is a slack variable. The penalty equation acts as
a trade off between having a large separation between terms
and incorrectly classifying observations. The feature vector,
x(i), is used with both the text classification and sentiment
analysis forms outlined earlier in the section. The variable,
y(i), is the observed class for a particular observation.

5.5 Training and Testing

Training and testing the models for the text classification
and sentiment analysis problems involves nearly identical
steps. We partitioned the training set in a 70-30 split where
70% of the data is reserved for training and 30% is marked
for testing. When performing this random sampling, we
assure there is an equal representation of tweets from both
classes while maintaining an accurate timeseries representa-
tion. After training the model on this balanced training set,
we record the rate at which samples are classified correctly
with respect to the test set data points. We repeat this
procedure ten times and aggregate the correct classification
rates over all iterations.

6 RESULTS

We tested classifiers using two data sets: one where the
tweet had been stemmed using Porter stemming and one
without. To assess the performance of different classifiers,
we computed the accuracy of each. In every case, the accu-
racy of the classifier was on par or significantly better when
operating on the unstemmed data.

In our first classification attempts, we treated the words
in a tweet as elements of the feature vector for each classifier.
Bernoulli Naive Bayes performed the best out of all text
classification algorithms by achieving a day to day accuracy
of 95.00% and an hour to hour accuracy of 76.23%.

Fig. 3. Accuracy Using Tweet as Feature Vector

In our second classification attempts, we used the text-
processing.com API to calculate negativity, neutrality, and
positivity scores for each tweet. The API also returns a posi-
tive, neutral, or negative label. These labels were used as the
feature vectors for Naive Bayes (Bernoulli and Multinomial).
The return scores were used as the feature vectors for the
classifiers. Logistic Regression performed the best using this
feature vector achieving a day to day accuracy of 86.00%
and an hour to hour accuracy of 98.58%.

A confusion matrix along with the precision, recall, and
F-Score were calculated for the most accurate hour to hour

Fig. 4. Accuracy Using Sentiment as Feature Vector

classifier (Logistic Regression using sentiment scores) and
the most accurate day to day classifier (Bernoulli Naive
Bayes and Multinomial Naive Bayes using the tweet as a
feature vector).

Fig. 5. Confusion Matrix - Bernoulli NB Day-to-Day

Fig. 6. Confusion Matrix - Logistic Regression Hour-to-Hour

The precision matrix for day-to-day results has a pre-
cision of 1, a recall of 0.92, an accuracy of 0.95 and an F-
Score of 0.96. The negative predicted value calculated to
0.89, and the true negative rate calculated to 1. The precision
matrix for hour-to-hour results has a precision of 0.99, a
recall of 0.98, an accuracy of 0.986 and an F-Score of 0.99.
The negative predicted value calculated to 0.98, and the true
negative rate calculated to 0.99.

7 ERROR ANALYSIS

Our initial accuracy for predicting the hour to hour sign
change of Bitcoin using the Bernoulli Naive Bayes classifier
was 59.0%. In order to determine the possible error loca-
tions within the machine learning pipeline, we thoroughly
inspected inputs at each step. During one of the data pro-
cessing steps, we noticed many near duplicate posts that
differed based on numerical ID values within the tweets’
text. In order to remove these automated postings, we
adjusted the data cleaning procedure by removing all non-
alphabetic characters before removing duplicate tweets. In
order to ensure these automated postings were removed,
we computed the Levenshtein distance from each tweet
to every other tweet. The Levenshtein distance is the edit
distance between two strings. This value can be leveraged
to prove that any pair of tweets is dissimilar by at least
some threshold value. After cleaning, the new data set
was roughly 50% smaller, but yielded a significantly better
classification accuracy of 76.23%.

8 FUTURE WORK

In order to further improve the accuracy of the learning
algorithms, additional research can be performed in the area
of error analysis. An improvement that can be explored
for text classification algorithms involves accounting for



5

negation as outlined by Jurafsky et al [3]. According to
Jurafsky, an efficient method of accounting for negation in
text analysis is to prepend the prefix, not , after a negated
word. An additional modification that can be made to
the training set is to ensure that the training set has an
equal number of words associated with each classification.
Although our sets are relatively equal (8061 words in the
price decrease set and 8852 in the price increase set), creating
a training set that is completely unskewed could result in
lower classification error. In addition, we can formulate a
set of words where each element has a high correlation with
cryptocurrency market movement and use this as a basis for
training the learning algorithms. This adjustment will result
in sparser feature vectors for text classification and possibly
more accurate predictions.

REFERENCES

[1] Bollen, Johan, and Huina Mao. Twitter Mood Predicts the Stock
Market. http://arxiv.org/pdf/1010.3003\&. 14 Oct. 2010. Web. 12
Nov. 2015.

[2] Go, Alec, Lei Huang, and Richa Bhayani. Twitter sentiment analysis.
Entropy 17 (2009).

[3] Jurafsky, Daniel. Classification: Naive Bayes, Logistics Regression, Sen-
timent8, 2015. Web. 12 Dec. 2015.

[4] Madan, Isaac, Saluja, Shaurya, and Aojia Zhao, Automated Bitcoin
Trading via Machine Learning Algorithms, Department of Computer
Science, Stanford University.

[5] Natural Language Toolkit. Natural Language Toolkit NLTK 3.0
Documentation. 2015. Web. 11 Dec. 2015

[6] Online Bitcoin Wallet. Cryptonator. 2014. Web. 11 Dec. 2015.
[7] Scikit-learn. : Machine Learning in Python 0.17 Documentation.

Web. 11 Dec. 2015.
[8] Shah, Devavrat and Kang Zhang Bayesian Regression and Bitcoin.

http://arxiv.org/pdf/1410.1231v1.pdf. 6 Oct. 2014. Web. 12 Nov.
2015.

[9] Text-processing.com. API Documentation for Text-processing.com
Text-processing.com API 1.0 Documentation. Web. 11 Dec. 2015.

[10] Tweepy. Tweepy. Web. 11 Dec. 2015.


