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Abstract—Motivated by recent legislation that bases sentencing
of criminals on their likelihood to recommit a crime, we developed
models that would make a prediction about whether or not indi-
vidual criminals would commit another crime post-release. Using
various supervised learning techniques, we looked at features
of relevant criminal, locational, and demographic information
to make predictions based on the known outcomes of, in some
ways, similar individuals. We also created a ”balanced set” with
equal numbers of positive and negative examples and trained
and tested on that set. From there, we moved on to a hybrid
unsupervised/supervised model. In this approach, we classified
the data we had using k-Means Clustering before training our
supervised learning algorithms on each data-cluster and looking
at the average predictive error between clusters. Finally, we
calculated Mutual Information statistics to infer which features
were most informative of recidivism in an effort to decompose our
hypothesized biases. In the end, we found that in the full data
set the supervised learning models on their own could barely
perform better than a null-hypothesis that no-one recommits,
but when paired with the k-Means clustering, we saw slight but
significant improvement in the prediction accuracy.

I. INTRODUCTION

As a society, we seek to reduce crime. One important
facet of this complex goal is the minimization of prisoner
recidivism, or a relapse in criminal behavior following release.
To this end there have traditionally been several strategies in-
cluding rehabilitation services and prisoner vocational training.
Recently, however, quite a different strategy has arisen in the
national conversation. In 2010, Pennsylvania adopted into its
state legislature the idea of using a ”risk assessment” metric
as a factor in determining the most appropriate incarceration
sentences. By Title 42, Section 2154.7:

(a) General rule.–The commission shall adopt a sentence
risk assessment instrument for the sentencing court to use
to help determine the appropriate sentence within the limits
established by law for defendants who plead guilty or nolo
contendere to or who were found guilty of felonies and
misdemeanors. The risk assessment instrument may be used
as an aide in evaluating the relative risk that an offender will
reoffend and be a threat to public safety. [1]

What if at the time of sentencing we could predict whether
an offender in question, still awaiting his/her sentence, would
commit another crime following his/her ultimate release from
our penal system? Given such a metric, many have advocated
that we could reduce the burden on our prison system by
providing ”low-risk” offenders early parole as well as enhanc-
ing public safety by keeping tabs on ”high-risk” offenders.
However, there has been significant push-back, with critics

raising both moral and practical questions surrounding the
usage of risk-assessment instruments. Indeed, former Attorney
General Eric Holder commented that ”by basing sentencing
decisions on static factors and immutable characteristics – like
the defendant’s education level, socioeconomic background, or
neighborhood – they may exacerbate unwarranted and unjust
disparities that are already far too common in our criminal
justice system and in our society.”

Interesting as it may be, in this study we avoid any moral or
ethical debating and focus on numbers. In particular, we hope
to address perhaps the most obvious and practical question:
given the apparent consequential nature of a risk-assessment
instrument, how well could such a model truly predict prisoner
recidivism?

II. RELATED WORK

We originally came across this topic through a collaboration
between well-known statistician Nate Silver’s FiveThirtyEight
and The Marshall Project, a non-profit organization studying
criminal justice. Just months ago, in August of 2015, they co-
published an in-depth piece titled ”Should Prison Sentences
Be Based On Crimes That Haven’t Been Committed Yet?”
[2] in which they brought up the idea of risk-assessment as
a tool for criminal sentencing. Though acknowledging the
controversies, they pointed to several counties across the US
in which initial implementations of risk-assessment tools used
in criminal sentencing has led to less severe sentences for
”low-risk” offenders and a reduction or flat-line in recidivism.

Intrigued by this idea, we looked into how such counties,
states, or outside organizations have constructed or determined
the best risk-assessment instruments. We found that multiple
other studies ([3], [4], [5], [6]) published statistics about rates
of recidivism. In particular, we found that previous studies
focused their analyses on identifying significant features. This
is one reasonable application of such analysis on prisoner
recidivism as there are so many human biases at play that
there is a natural goal of demystifying which features are
in fact most predictive as well as identifying the correlations
between features. Unfortunately, these studies do not publish
their predictive models nor discuss their methodologies.

Thus, the main difference between our work and these pre-
vious studies is that we will go beyond feature inference and
resulting predictive error percentages and report specifically
which models do best as well as interpreting our results.
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III. DATA

A. Data source

To perform any meaningful analysis on recidivism predic-
tion, it was critical that we find a longitudinal study on prison-
ers who were tracked following their release from the prison
system. While there were interesting questions to ask in the
unsupervised setting, we had our minds set on a classification
model that would make use of the binary outcome vector
that stated, did he/she reoffend? feature. The United States
Department of Justice’s Bureau of Justice Statistics (BJS) was
the only source that had large-scale studies of the type we were
searching for. We could gain access to a study conducted from
1986-1989 through the National Archive for Criminal Justice
Data. [7]

This data set, RECIDIVISM OF FELONS ON PROBATION
is composed of 12,369 ”cases” of felons released on probation
in the year 1986. Each case has 149 associated features
consisting of information ascertained from sentencing records,
probation files, and criminal history files. Notably, the study
includes whether the felon re-entered the prison system during
the four years this study was conducted. It is worth noting that
all of our analysis will be in terms of recidivism in this four-
year period only.

B. Processing

Let us now define a ”risk assessment instrument”, as the
Pennsylvania legislature did, to mean simply an empirically-
based model which uses known information about an individ-
ual that are relevant in predicting recidivism to do just that. In
order for us to construct such a model, we first had to process
our data such that our features were discrete and ordered (as
it did not make sense to run regression analysis on categorical
data). Secondly, in order to draw conclusions as to predicting
recidivism at the time of sentencing, we needed to ensure that
all of the features we included in our models were known at
the time of sentencing and not afterward.

To this end, we identified the number of previous con-
victions, type of crime committed, whether there was a pre-
sentence investigation, number of address changes, drug abuse
history, education, and a host of demographic information
as suitable features. One of the challenges we faced early
on was that many features we would have liked to include,
such as employment and income, were pre-processed, assigned
weights, or coded in a way that made them unavailable to
us. Additionally, several features had to be discretized and
the categorical features needed to be transformed into binary
indicator variables; type of crime committed, for example, was
divided into nineteen new binary features that corresponded to
indicator functions of whether or not the crime was a certain
crime.

Perhaps the greatest challenge we had with our data set was
in dealing with missing data. When the outcome, if the subject
reoffended or not, was not known we threw those examples
away. Unfortunately, though not unexpectedly, many of the
input data points were listed simply as ’unknown’. Moreover,
the distribution of unknowns was largely uniform so it was
unfeasible to throw away certain features or examples. In the

end, we decided it best to deal with this using inter-feature
correlations.

Given that a feature vector Xj had an example x(i)j that was
missing, we determined the feature vector Xk most correlated
with Xj . We then found the value of x(i)k for that training
example. Then, for every example x(n)k in Xk where x(n)k =

x
(i)
k , we found the corresponding value x(n)j in Xj . We then

found the average (mean for ordered data, mode for categorical
data) of all the associated values x(n)j to assign to x(i)j .

Finally, this left us with an 11,712 example by 38 feature
data set that was ready for analysis.

IV. MODELS

A. Supervised Learning

For this study, we looked at 4 supervised learning al-
gorithms: Naive Bayes, Logistic Regression, Support Vector
Machines, and Random Forest Classifiers.

Naive Bayes - The Naive Bayes algorithm looks at the
conditional probabilities of an input given a certain output as
well as the marginal probabilities of both that input and output.
It then calculates the conditional probability of an output given
that input with:

p(y|x) =
∏
i p(x

i|y)p(y)∏
i p(x

i)

and predicts the output with the highest condition probability.
Logistic Regression - The logistic regression algorithm

assumes that conditional probabilities of outputs given input
features follow a logistic function as follows:

p(y = 1|x) = 1

1 + e−(θ0+θ1x)

. By looking at a joint likelihood function:

L(θ) =
∏
i

p(yi|xi; θ)

and setting the partial derivative with respect to θ equal to
0, the algorithm solves for the maximal parameters θ. For
each new test example, the features x are put into the logistic
function, and if the value is greater than 0.5, output 1 is
predicted.

Support Vector Machine - A Support Vector Machine
(SVM) uses the Lagrangian dual form of the optimal margin
classifier to construct a separating hyperplane between positive
and negative examples. The general form of the dual optimiza-
tion problem for a linear SVM is:

maxαW (α) =
∑
i

αi − 1

2

∑
i,j

yiyjαiαj < xi, xj >

such that:
αi ≥ 0,∀i∑
i

αiy
i = 0

For nonlinear classification, we use Kernels to define feature
mappings to represent non-linear data as feature vectors in
terms of only inner products and create a hyperplane in the
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transformed space. We tried 3 different Kernel’s in our tests:
polynomial, sigmoid, and Gaussian, defined (respectively) as:

K(x, z) = (xT z + c)d

K(x, z) = tanh(axT z + r)

K(x, z) = −||x− z||
2

2σ2

Random Forest Classifier - A random forest classifier is an
ensemble learning algorithm that captures the average or the
mode of many regressions. The data is split into B different
branches of n samples each, called Xb, yb. Each branch then
uses logistic regression to get a training rule fb and calculates
the mean of these rules as:

f̂b =
1

B

B∑
b=1

fb(x)

The idea behind this is that the mode of our regressions
would capture a stronger prediction than would any single
regression; moreover, as regressions may overfit to the training
data, this ensemble algorithm corrects for such overfitting.

B. Unsupervised Learning

k-Means Classifier - The k-Means algorithm classifies each
training example into one of a few clusters based off of
minimum distance to the cluster center

C(i) = argminj ||xi − µj ||2

.
The cluster centers, µj , start as random but are then updated

according to the samples placed in them with:

µj =

∑
i 1(c

i = j)xi∑
i1(ci = j)

C. Feature Inference

Mutual Information - In order to look at the similarity
between features and the outcomes, we used the mutual
information statistic. In particular, we looked at the similarities
between the values our features xi took on and the positive
(reoffending) outcome y = 1, as follows:

MI(xi, y = 1) =
∑
xi∈χ

∑
y=1

p(xi, y = 1)log

(
p(xi, y = 1)

p(xi)p(y = 1)

)

V. RESULTS AND DISCUSSION

We first began by establishing naive assumptions as pre-
dictors and figuring out baseline test errors associated with
using these predictors. The five we looked at were to as-
sume that everyone recommits (87.69% error), assume no-one
recommits (12.31% error), assume that all people under the
age of 30 will recommit (56.49% error), assume all violent
criminals recommit (30.10% error), and assume that all with
previous records recommit (24.67% error). Our subsequent
results would be compared to these baselines. However, it is

immediately apparent that there is quite a low error associated
with predicting no one recommits given how imbalanced our
training set is. As a result, our initial estimated test errors could
barely exceed the predictive power of the ”null hypothesis”
that no one recommits a crime. Given this, we split our
subsequent analyses into two main sections: one in which we
trained on the full, imbalanced data set, and another in which
we randomly sampled both positive and negative training
examples in order to create a set with even numbers of the
two.

Full Dataset % Error
Baseline 12.32 (Assume No-One Recommits)
All Features 12.21 (Polynomial SVM)
5 Features 13.14 (Logistic Regression)
After Clustering 8.59 (8 clusters, Polynomial SVM)

TABLE I
FULL DATASET RESULTS: THE BEST TEST ERRORS WHEN TRAINING AND
TESTING ON THE FULL DATASET. CLEARLY, THE TEST ERROR REMAINED

MORE OR LESS CONSTANT UNTIL THE HYBRID MODEL OF K-MEANS
CLUSTERING AND SUPERVISED LEARNING WAS EMPLOYED.

A. Full Data set Analysis

Our first step in deriving a model was to train the four
supervised learning algorithms. From our set of 11,712 ex-
amples, we performed k-fold cross-validation with 10 folds
and calculated the average test error. Using all of the features
in our set, we found that the errors we could get barely
exceeded the predictive power of the ”null-hypothesis” that
no one recommits a crime. There were slight variations for
the various models, but the best that each could do was
12.28% error for logistic regression, 12.21% for the SVM’s
(best with polynomial Kernel), and 12.28% for the random
forest classifier.

While this showed some improvement over many of our
baseline tests, it was clear that the prediction was very skewed
towards giving a negative result and in regards to that baseline,
we saw no improvement.

B. Balanced Subset Analysis

Seeing how skewed our model was towards the negative
prediction and realizing that close to 90% of the data used
for both training and testing were negative examples, we
attempted to create a more even subset of the data. We took
a random sampling of negative examples until the number of
negative examples matched the number of positive examples
in our data. We then concatenated all of these examples into
a matrix that we will refer to from now on as our ”balanced
set”.

We found baselines and employed learning algorithms to
this balanced set in the exact same way that we had in the
full, unbalanced set. For this set, if you assume that everyone
recommits or no-one recommits the test error is 50%, if you
assume that all criminals under 30 will recommit it is 44.80%,
if you assume all violent criminals recommit it is 61.86% and
if you assume all with a previous record recommit it is 50.72%.

Our results for the test error of the four unsupervised
algorithms in the balanced set was significantly improved
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from these baselines. When using all of the features in our
data, logistic regression achieved 25.12% error, the SVM with
Guassian Kernel gave 25.19% error, and the random forest
classifier resulted in 21.16% error.

Balanced Dataset % Error
Baseline 44.80 (Assume Only Young Criminals Recommit)
All Features 21.16 (Random Forest Classifier)
3 Features 21.12 (Random Forest Classifier)
After Clustering 33.45 (4 clusters, Polynomial SVM)

TABLE II
FULL DATASET RESULTS: THE BEST TEST ERRORS WHEN TRAINING AND
TESTING ON THE BALANCED DATASET. WHILE THE OVERALL ACCURACY
OF THESE MODELS ARE NOT AS GOOD AS WITH THE FULL TRAINING SET,

WE HAVE IMPROVED PERFORMANCE OVER THE BASELINES. THE 3
FEATURE MODEL HAS AS MUCH (AND EVEN SLIGHTLY MORE) ACCURACY

AS THE MODEL USING ALL OF OUR FEATURES.

C. Feature Selection

Next, we found that our training error was significantly
lower than the test error (as low as 1% in some cases), our
models were most likely suffering from high variance. Since
we had a limited number of examples, we could not really
increase the size of our training data. We looked at using more
folds for cross-validation, but had no significant improvement.
We then tried to use fewer features.

We performed both forwards and backwards search to find
the features with that showed the largest change in test error
when added or removed. For both models, backwards search
yielded few results, as the model was already so skewed in
one direction and removing one feature at a time did not give
a significant change in the error.

Using forward search on the full data set, the algorithm
effectively identified the lowest occurring features. When
averaging across LR, NB, RF, and SVM, the lowest expected
test error (using CV) resulted from a 5-feature model which
included the four lowest occurring features as well as the crime
committed being a weapons offense. Naturally, the features
that were most predictive were simply the lowest occurring
features, as they were likely to result in the model predicting
a negative result, and this procedure clearly revealed nothing
surprising. More importantly, however, at no point were we
able to ascertain a group of features that gave us a test error
below the 12.2% error that we had seen before that seems to
predict that almost no one would recommit.

For the balanced set, on the other hand, we could identify 3
features that could get the training error to within a statistical
margin of the results when using all of our features (See
Figure 1). These features - whether or not the person was
Hispanic, whether or not there was an investigation prior to
the trial, and whether or not the person was a female - were
not necessarily the ones that we expected. When training and
testing (using cross validation) on this balanced set using only
these three features, the test error converged to near the error
when considering all features, and in some cases was better.
The best test error came from the Random Forest Classifier
with an error of 21.12%, slightly lower than the best with the
full set and again significantly improved from our baselines.

We could not, however, drastically outperform the model that
used all of the features.

Fig. 1. Forward Feature Selection: The training error from training and testing
(with CV) on the balanced data set. The test error for every algorithm (except
Naive Bayes) comes down significantly and converges after the first three
features added.

Finally, we looked at the Mutual Information statistic to see
which features shared the most information with the results
vector in hopes that this could shed light on which features
to use. The results produced a few dichotomies that follow
stereotypes that one may predict: men are positively corre-
lated with recidivism, women are negatively; single people
positively, married people negatively; black people positively,
white people negatively. Perhaps surprisingly, the other feature
that shared the most information with the results was the
binary value that indicated a crime was burglary (See Figure
2).

While these dichotomies give some interesting insight, the
features are almost definitely correlated with many other
factors, some of which we did not have access to. For example,
being black is very highly correlated in our data with having
a prior criminal record, being single, and being employed
less of the time before the crime was committed. Therefore,
it is important to acknowledge the inter-dependence of so
many features (especially demographic features) rather than
jumping to conclusions. Indeed in the FiveThirtyEight and
Marshall Project collaboration, they found that even when
they tried to explicitly eliminate certain biases they couldn’t.
In one analysis, they found that they could remove features
on race and income without losing much information as other
features, such as being single and unemployed or being male
and without a high-school diploma, simply served as proxies
for your removed features.

We tested models based on just these features with strong
mutual information, but again our models failed to signifi-
cantly outperform the null-hypothesis for the full set and did
not perform better than our model from feature selection for
the balanced set.

D. Hybrid Model

It was not until we combined the unsupervised learning with
the supervised learning tool of k-means clustering that we saw
improvement in the test error. We ran the k-means algorithm
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Fig. 2. Graph of Mutual Information: Mutual Information between each
feature and the outcome vector. The features with the strongest MI are circled.
The blue circle represents the crime burglary, the green circle (from left to
right) is being a man, being single, and identifying as black, and the red
circle (from L to R) has the counterparts, being a woman, being married, and
identifying as white.

with random initial cluster centers and then once the data was
classified, trained and tested using 10-fold cross-validation on
the samples in each individual cluster. This was repeated 10
times to get an average error. The best test error that we found
in all of our tests was 8.59% when the data was sorted into
8 clusters and we classified the data in each cluster using an
SVM with a polynomial Kernel.

We ran a similar protocol for the balanced set, but found
actually slightly worse results after clustering. There are a
number of possible explanations for this, but perhaps this
clustering can not do as good a job of separating the data into
very distinct groups due to the even distribution of positive
and negative examples that you start with.

It is important to note that every time that the tests were
performed, the training and testing was done on within the
same cluster. Therefore, it is important that the cluster centers
that are chosen for training are held fixed when clustering
a new example. Only then can this clustering improve your
accuracy of prediction.

VI. CONCLUSION

The questions and controversies surrounding risk-
assessment as a tool in criminal sentencing cannot be
overstated. Statistics, after all, allow us to infer generalizations
about groups of people. To use the actions of previous
collections of what we deemed ”similar” people in deciding
the fate of an individual carries implicit moral/philosophical
assumptions and value-judgements which we do not
necessarily agree with. Still, independent of this, the concept
of predicting recidivism poses an interesting academic
challenge.

Given the data available to us and the time-scale of this
project, we could not develop a model that predicted re-
cidivism with accuracy significantly different than making a
naive prediction that no one recommits. Based off of this, and
combined with the gravity of a false positive result (someone
serving longer jail sentences), our model shows no added value
of using statistics to look for individuals who will recommit

crimes. When we had a contrived set with even numbers
of positive and negative examples, we could outperform this
naive prediction by almost two fold. However, attaining this
even distribution may never be feasible and a 25% error is
still far too high in our minds to base sentencing based off of
this model.

In the future, if a similar predictive model is to be built
and used, a far more in depth and larger data set is needed.
Not only would we want to look at more examples, but we
see merit in both tracking criminals over a longer period of
time and having more complete information about someone’s
background in order to control for correlated features. We
believe that recidivism prediction is possible, but given the
resources we currently have, we are not able to make an
adequately performing model.
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