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Abstract

Deciphering why different sequences are
preferred under different contexts is
critical to understanding how nearby
genes are regulated so precisely. Here I
investigate this question using two
perspectives. First, [ ask if there are
sequence features that are predictive of
different contexts. Using a logistic
regression model to identify sequence
preferences when Met4 is recruited to
sequences with Cbfl and Met28 (three
factor model) compared to when just Cbfl
is present (two factor model), I confirmed
a previous observation that the presence
of an ‘AAT’ motif that is predictive of the
three factor model. Using this ‘AAT’ motif
to label three factor binding sites, I tried
to identify other features that were
predictive of this motif within their
genomic context (such as distance to
other proteins binding DNA, distance to
nearest gene, etc). Here I look at different
methods to predict sequence preferences
between two contexts with the broad goal
of understanding how cofactors affect the
binding preferences of a protein. [ go
further by identifying other features that
are predictive of this three-factor model
within its genomic context.

1. Introduction

Transcription factors, or DNA binding
proteins, regulate genes by binding
regulatory elements to turn genes on or
off. Understanding why a transcription
factor gets recruited to a regulatory
sequence can help elucidate how genes
are regulated so precisely. Delving
deeper into how the genome regulates
this process in a spatiotemporal fashion
can shed insights into key moments in

development as well as how cellular
processes become dysfunctional.

To understand this problem, 1 have
chosen a simple, well-studied example.
Met4 is a protein that activates
transcription of genes involved in the
sulfuric metabolic network in
Saccharomyces cerevisiae. Met4 lacks the
ability to bind DNA directly. It is
recruited to DNA through cofactors (Cbf1,
and Met31/Met32) that target its binding
to the correct locations on DNA. A third
cofactor (Met28) stabilizes this complex
of proteins (1).

My first goal is to investigate the
sequence specificity of Met4 recruitment
in the presence of two or three cofactors.

Figure 1a and 1b: Here are illustrations
of two factor and three factor models of
Cbf1 binding DNA. Cbfl binds DNA and
recruits Met4 and Met28. Met28 acts to
stabilize the complex’s interactions.
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Understanding the sequence specificity of
Met4 recruitment using experimental
assays can add to our knowledge of the
sequence binding preferences of this
factor within its genomic context. The
presence of other factors binding nearby
and the distance to the nearest gene could
help predict the functional importance of
a Cbfl binding site. This led me to my
second goal where I attempted to

2. Data Acquisition

i. Two factor or three factor model

To answer this first question, I found
published experimental data that
measures the recruitment of Met4 to
1358 DNA sequences (20 bps long) that



either bind Cbfl or Met31 (2). More
specifically, the data quantifies DNA
binding affinity of Met4 using Protein
Binding Microarray assays performed in
the presence or absence of Met31, Cbfl,
and Met28.

By testing the binding affinity of
sequences for various combinations of
cofactors, we can compare sequence
preferences for different complexes.
While Met4 binds non-specifically to all
sites, it shows higher sequence specificity
when recruited specifically by
Met31/Met32. Cbfl can recruit Met4 to
specific sequences but, when stabilized by
Met 28 (Fig 2a), its sequence preferences
become even more selective (Fig 2b).

Figures 2a and 2b: Raw data of binding
affinities (median probe fluorescence) for
each of the 1358 sequences of length 20
under the a) two factor model and the b)
three factor model context.
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ii. Genomic Context

To identify Cbf1 binding sites within their
genomic context, [ identified the
promoters, or 1000bp regulatory regions,

of 45 genes that have been shown to be
highly regulated by Met4 (1). I scanned
these promoters for Cbfl binding sites
and looked for the ‘AAT’ motif upstream
of these Cbfl sites. I then scanned the
promoters for a second factor, Met31.

3. Methods

The primary goal of this project was to
distinguish sequence preferences for a
transcription  factor between two
contexts. Once sequence preferences
were found, certain motifs could be used
to label Cbf1 binding sites in the genome
and other genomic features could be used
to predict these labels.

3.1 Features

i. Two factor or three factor model

The 20 bp sequences (n=1358) are
converted into a binary feature vector. If
the ratio of the binding affinities between
the two contexts exceeds a threshold of
four, it is labeled as “three factor”. Each
nucleotide (A/C/G/T) for each position
(1-20) found within a sequence will be
considered and each feature will
essentially mark the presence of absence
of a nucleotide at that position for each
sequence.

ii. Genomic context
Using the data mentioned above, I labeled
each Cbf1 binding site within a promoter
as having (positives) or not having
(negatives) the ‘AAT’ motif upstream.
From the data I processed, I curated four
features (Fig 6)
* Distance between Cbfl and Met31
¢ Distance between Cbf1 and gene
* Distance between Met31 and gene
* Orientation of Met31 (forward or
reverse strand)

Figure 6: Cbf1 sites are labeled as either
containing an ‘AAT’ motif 3 bp upstream
(positives) or not (negatives). Here I
illustrate features used to predict
presence or absence of ‘AAT’ motif near
the Cbf1 binding site.
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3.2 Models and metrics

To answer my first question discerning
Cbf1’s sequence preferences between the
three or two factor model, I asked which
nucleotides in which positions found
within a sequence are most predictive of
sequences favoring the three factor model
using a logistic regression model with an
L2 penalty. For both questions, I
compared the performance between
logistic regression and SVM linear kernel.
[ used 10X CV to test the robustness of my
model’s accuracy and AUC. I
implemented these models using python’s
scikit-learn package.

4. Results

Using my features, [ tested the
performance of different models by
measuring the AUC (Area Under the
Curve). I tested the robustness of my
model using 10X CV. Holding the sample
size constant, [ compared the
performance of each model and noted
that logistic regression performed better
than SVM (Table 1).

Table1l: Benchmarking the
erformance of different models
Sample size | Training Testing /CV
AUC AUC
Logistic 504 0.93 0.90
Regression
(LR)
Linear 504 0.88 0.88
kernel SVM
Interestingly, training and Cross-

validation mean scores appear to
converge more quickly in the SVM than in
the logistic regression model (Fig 3a, 3b).
The SVM model mean CV score is
unaffected by increasing training example
siz (Fig 3b).

Figure 3a: Learning curves for the
logistic regression model. Here we are
plotting the average training and cross-
validation score with increasing training
sample size. The colors indicate indicate
the standard deviation from the mean.
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Figure 3b: Learning curves for the linear
SVM.
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Figure 4: Coefficients for logistic
regression model.
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[ analyzed the logistic regression model’s
coefficients to identify nucleotide
preferences found within the sequence
that might indicate context specific
sequence preferences (Fig 4). Positions
8-12 mark the binding site of Cbfl.
Despite the fact that Cbfl binds both
model contexts, it shows a preference for
a ‘GT’ in positions 11-12 in the three
factor model. In addition, an ‘AAT’ motif
in positions 3-6 is more prevalent in the
three factor model and has been
experimentally shown to affect Cbfl’s
recruitment of Met4 to DNA (2).

Using the fact that AAT appears predictive
of models requiring more specificity, we
can label Cbfl sites found in the yeast
genome as either being three factor
binding sites or not. Here I assume that
sites containing the ‘AAT’ motif are
indicative of sites that are more
functional than sites that lack that motif.
[ assume this because sites that show
more sequence specificity might be more
functionally important in regulating
particular sets of genes at precise
timepoints.

However, I was unable to select for
features that were particularly predictive
of this label (‘AAT’ presence/absence)
Cross-validation showed me that my
models predicted little better than
random (Table 2). This might be due to
the fact that my labels are unbalanced.

Table2: Model performance for
determining features relevant to
functional genomic regulatory sites

10x CV AUC
LR 0.54
SVM 0.59

5. Discussion

Identifying rules as to why proteins
prefer to bind certain sites under varying
conditions can help identify how genes

are regulated. This valuable information
can then be used to understand how cells
regulate genes during development and
how regulation of these genes can be
disrupted during illness or disease.

Trying to distinguish sequence
preferences between two contexts is not a
novel idea. There are a variety of tools
that attempt to accomplish this goal (3,4).
However, many of these tools struggle to
to distinguish subtle differences between
the same protein binding under slightly
different conditions.

Here I attempted to implement my own
models to distinguish between the
binding preferences of Cbf1l with differing
cofactors present. This dataset provided
an opportunity to detect subtle binding
site preferences between the two
contexts. Identifying the ‘AAT’ motif that
has been shown to be present in the three
factor model in previous literature (2)
indicated that straightforward logistic
regression could pick up these
differences. One interesting result was
that the SVM model mean CV score
seemed unaffected by increasing training
example size. This could be due to the
fact that the data is easily separable even
with smaller training sizes. One thing to
note is that the models treat these
nucleotide positions independently. It
might be worthwhile to throw in terms
that incorporate dependency between
adjacent nucleotides. However, doing so
might lead to over-fitting.

Attempting to understand how other
genomic features could predict the
presence of this ‘AAT’ motif proved to be
less fruitful. The fact that the labels were
unbalanced (more negatives than
positives) likely made this problem
harder. In addition, Cbfl sites within
their genomic contexts are more likely to
be false positives (not real Cbfl binding
sites) and this increases the noisiness of
the dataset.



6. Conclusion

Using logistic regression and SVM, [ was
able to identify sequence preferences
when Met4 is recruited to sequences with
Cbfl and Met28 (three factor model)
compared to when just Cbfl is present
(two factor model). More specifically, I
identified the presence of an ‘AAT’ motif
that was predictive of the three factor
model that has been shown
experimentally imporatant(2). Using this
‘AAT’ motif to label three-factor binding
sites within the genome, I hoped to
identify features that were predictive of
this motif but was unsuccessful in this
pursuit.

7. Future Directions

Future models attempting to distinguish
Cbfl binding preferences may consider
the dependency between adjacent
nucleotides. In attempting to identify
functional three factor Cbfl binding sites
within their genomic context, I could
spend more time refining the features
before including them in the model. For
example, I could alter the false positive
rate when calling Cbf1l or Met31 binding
sites. In addition, I could include the
expression magnitude of the nearest gene
as a feature. Most importantly, 1 will
switch to a metric that handles classes of
differing sizes (f-statisticc, Mathews
correlation coefficient). This is especially
important because there are very few
positives in this particular analysis.
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