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Abstract— Global gas flaring is difficult to sense, a 
tremendous source of wasted revenue, and causes 
ecological problems. We use satellite sensors to 
predict gas flares’ sizes. We tested regression and 
classification algorithms, along with anomaly 
detection using k-means, and found that linear 
regression and 2-class SVM are almost as good as 
the full-tilt sensor model produced by the National 
Oceanic Atmospheric Administration (NOAA).  
 

I. INTRODUCTION 

Natural gas flaring causes environmental 

damage and can be a significant source of lost 

revenue for oil producers. In this paper we apply 

various machine learning techniques to estimate 

global greenhouse gas flaring emissions. We will 

discuss the technical aspects of the machine 

learning bits further on, but first we give a brief 

introduction to gas flaring. 

 
 

 

In many oil wells, associated natural gas is 

produced alongside the oil. This gas can occur 

because of a variety of reasons; the drilled 

reservoir could contain both oil and gas, the gas 

could exist as a pressurized liquid in the reservoir 

and come out of solution while traveling in the 

wellbore, or there could be chemical processes that 

cause the gas to bubble out of solution. Whatever 

the reasons are, the problem is that natural gas at 

the surface is much harder to capture and safely 

store than liquid petroleum products are. In some 

locations, this natural gas can be safely captured 

and brought to market. However, in other areas the 

infrastructure necessary to adequately capture and 

transport the natural gas does not exist. In these 

cases, because of the safety hazard in having 

quantities of flammable gas floating around, the 

associated natural gas is flared [2]. An example of 

a natural gas flare can be seen in Figure 1. 

Unfortunately little data exist to estimate the 

amount of global natural gas that is flared. Some 

jurisdictions require companies report their flaring 

emissions, but the data are often poor quality, not 

in the public domain, or are simply not reported. 

Therefore we aim to investigate the use of National 

Oceanic and Atmospheric Administration (NOAA) 

satellite data to estimate global greenhouse gas 

flaring. NOAA estimates CO2 emissions, but this 

process requires hundreds of sensors and features; 

our goal is to replicate the NOAA CO2 estimation 

results using a subset of their features [3]. 

II. DATA, FEATURES, AND PREPROCESSING 

Our data set consists of geotagged sensor 

readings from a NOAA satellite which performs  

infrared imaging of the earth. We have roughly 6 

months of daily estimates of CO2emissions (ground 

truth) derived from little over hundred different 

features.  

The features included in the full dataset are 

various sensors aboard the satellite, and some 

manufactured features such as transmissivity of 

sensor readings. To perform our analysis, we 

chose to train on a subset of the total features: the 

infrared measurements. There are 8 different 

infrared spectral band sensors onboard the 

satellite, with each sensor measuring the intensity 

Figure 1: Gas flare in North Dakota [1] 



of light received from a different band of infrared 

light. Gas flares burn at a significantly hotter 

temperature than the background Earth, so they 

emit light in the near-far infrared, precisely those 

spectrums which the NOAA infrared sensors pick 

up [3]. Figure 2 shows an example of one data 

point, with the NOAA estimate of CO2 highlighted in 

peach and the 8 sensor readings highlighted in 

blue.  

To preprocess the dataset, we performed a first 

round of manual cleaning. The ground truth 

reported CO2 values (the CO2 equivalent of the 

burned natural gas) are real numbers representing 

kg/s flow rates; there are a significant portion of the 

data which have physically impossible CO2 values, 

such as 106 kg/s; these impossible CO2 values 

were thrown out, leaving us with a data set 

containing roughly 300,000 points.  

 
Table 1: PCA for sensor readings 

 
As a first pass at further shrinking the range of 

input data, we ran Principal Components Analysis 

(PCA) on the set of sensor measurements. We 

calculated the percent of variance that each 

principal component explained; Table 1 contains 

the output of our analysis. It is evident that no 

single set of principal components explains the vast 

majority of our data, so we decided not to perform 

data shrinkage and move forward by using all 8 

sensor readings in our analysis. We feel this is 

appropriate also because for our dataset there are 

vastly more observations than features, so there 

wasn’t a pressing need to shrink our feature space 

for analysis purposes.  

III. MODELS 

The following models were utilized for this 

investigation. All training was done on the first third 

of the data and testing was done on the last two 

thirds. 

A. Linear Regression 

We chose linear regression to determine how 

accurately we could predict exact CO2 emissions 

values. The 8 sensor features were used with the 

built in MATLAB® linear regression model that 

used the Moore-Penrose pseudoinverse   

           to calculate the regression parameters 

[4]. We first ran this algorithm with an intercept term 

(x0) and noticed a 75% error in the model, which 

seemed unusually high.  After further looking at the 

type of data that was reported, we realized that 

most of our CO2 readings were centered on 0. This 

meant a more realistic model would include an 

intercept term of 0. We also looked into running 

higher order polynomial regression models but 

decided that because we didn’t know the exact 

structure of the data it would be difficult to ensure 

we weren’t overfitting it and thus decided to only 

work with linear regression. 

B. SVM 

After running linear regression, we wanted to 

see if we could reduce the training and test error 

significantly through classification. We decided to 

implement a multi class SVM model that would split 

CO2 emissions into small, medium and large bins. 

However, because the small and medium values 

were too similar, we were not able to linearly 

separate them for any kernel choice. We then 

focused on a 2 class model that separated small 

Figure 2: Example truncated data point 



and large CO2 emissions. We used MATLAB®’s 

svmtest and svmclassify functions, tools that were 

based on a soft-margin optimization problem: 
  

Equation: Soft-margin SVM optimization formulation 

 
We separated small and large values based on 

a threshold of .5 kg/s. We performed appropriate 

transformations to change our training y values into 

-1 and 1 and we used the default values for the 

regularization and error tolerance terms. 

There were two main issues that we faced 

during this classification. First, threshold values to 

separate these bins were not given in literature and 

thus we did not have an accurate way to separate 

these values. We decided to conduct a sensitivity 

analysis on the threshold to handle this problem. 

We wanted to understand how the error changed 

when we varied the threshold value from .3 to 1 

kg/s in our test set. Second, our data was not 

separable using a linear kernel. Because we didn’t 

completely understand the entire structure of the 

data set, it was difficult to determine which kernel 

would best fit our needs. After testing our 

classification with multiple kernels, we thought the 

quadratic kernel was the optimal choice because it 

performed well and was only one order higher than 

linear, reducing potential overfitting. However, 

further research should be conducted to determine 

the most appropriate kernel for this dataset and 

features. 

  

C. K-means 

Despite our initial cleaning of the data, there 

were still anomalies present based on the 

histogram depicted in Figure 3. Notice the vast 

majority of the data clumped in the small CO2 

emissions values. We think some portion of those 

points corresponding to the long, sparse tail of high 

CO2 emissions values are anomalies, so we 

investigated k-means for anomaly detection.  

 
Figure 3: Histogram of reported carbon dioxide 

We used K-means to detect these potential 
anomalies and then reran our line regression to 
determine whether or not these anomalies 
significantly affected our results. We didn’t rerun 
SVM because the error was already relatively low 
and removing a few points wouldn’t affect the model 
significantly for the classification. Six clusters were 
chosen to represent our data. Since we didn’t know 
how to determine how many potential anomalies 
there were, we ran a sensitivity analysis on 
removing clusters that contained 100 to 6000 
values and then reran our algorithms. In addition, 
because K-means only finds a local optima, we ran 
this 25 times and chose the clusters with the lowest 

cost function                      
  

    to 

represent our cluster segmentation.  

IV. RESULTS 

Figure 4 illustrates the sensitivity of the SVM 

test error to changes in the CO2 threshold. As 

expected there is a trend of smaller proportion 

misclassified for the test set as the threshold 

increases because there are fewer CO2 equivalent 

values that are that large. We used a threshold of 

.5 in our results, which represents the largest 

potential misclassification of our SVM, to put an 

upper bound on the misclassification error with this 

algorithm.  

 
 



 
Figure 4: Sensitivity of SVM error to threshold 

Table 2 illustrates sample sizes, training, and 

testing errors for each algorithm. The linear 

regression model’s error is halved when the 

artificial intercept is removed. SVM has the lowest 

error at 5%. After running k-means and removing 

100 potential anomalies, linear regression had 

same test error. We were unable to run SVM after 

k-means anomaly detection because our computer 

ran out of memory. In the future, we propose 

running PCA to determine the principal 

components and using that for SVM classification. 

 
Table 2: Summary results 

MODEL 

TRAIN 

SIZE TEST SIZE 

TRAIN 

ERROR 

TEST 

ERROR 

Linear  

with Intercept 91,355 240,057 65% 68% 

Linear without  

Intercept 91,355 240,057 33% 33% 

2-class SVM 91,355 240,057 4% 5% 

Multiclass 

SVM 91,355 240,057 N/A N/A 

Linear    

k-means 110,440 220,881 32% 32% 

 

Figure 5 shows the sensitivity of linear regression 

to the number of potential anomalies removed 

through k-means. 

 

 
Figure 5: Linear regression anomaly removal sensitivity 

Based on the histogram of CO2 emissions, we 

expected there to be at most 100-200 additional 

anomaly points. At this range we noticed that the 

linear regression error hardly changes which 

reveals that these points are not significantly 

impacting our results. There is a sharp increase in 

the test error when approximately 300 points are 

removed. This indicates that there is a small subset 

of our data that significantly affects our results but 

are not anomalies. As we increase the number of 

points removed, we see that the error stabilizes. 

Once we have removed all points outside the 

largest cluster, removing any more points has little 

effect as the volume of training data in the large 

cluster is so high  (Table 3).  

 
Table 3: Size of k-means clusters 

Cluster 
Points in 
cluster 

1 325426 

2 4974 

3 178 

4 545 

5 198 

6 91 

 



V. DISCUSSION AND CONCLUSION 

As we see in Table 2, linear regression without 

an intercept term has a lower test error than linear 

regression with an intercept term. We suspect this 

is due to the physical model underlying our 

regression. If a linear model is accurate, the CO2 

prediction from an input of 0 across all sensors 

“should” be 0 - i.e. the model should predict that 

f(0) = 0. This makes sense; if the infrared sensors 

are reporting no light in their spectral bands, which 

means that there is nothing creating heat to be 

picked up by the sensors, which means there 

should be no underlying gas flare.  

For the SVM, we see a strong classifier with 

respect to separating between small and large 

flares, classified as those with flaring intensities 

larger than 0.5 kg/s. Unfortunately SVM is not 

successful at classifying between small/medium 

flares as it seems the dataset is simply too dense in 

this region and there does not exist a separating 

hyperplane. Therefore, perhaps regulators can use 

SVM as a tool to identify the worst polluters in a 

given region and then perform more sensitive 

analyses, either by drilling deeper into satellite 

imagery or using physical sensors on-site, to 

quantify the emissions more finely.  

Given more time, the next steps would be to 

obtain a dataset of the Bakken oil field that has true 

CO2 emissions as reported by oilfield operators. 

We would train our algorithms with these values 

instead of the satellite estimates and then test to 

determine how accurate NOAA satellite values are 

with respect to ground truth CO2 emissions 

worldwide. Next, we would want to introduce a 

penalty function to sensor readings that took into 

consideration the cloud covering and see its effect 

on the overall performance of our algorithms.   
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