
Blowing up the Twittersphere: Predicting the Optimal Time to Tweet
Zach Ellison (zellison@stanford.edu)

Undergraduate BS Computer Science Candidate,
Stanford University

Seth Hildick-Smith (sethjhs@stanford.edu)
Undergraduate BS Computer Science Candidate,

Stanford University

Abstract

As social media plays a growing role in society, more and more
people are depending on social media for outreach and adver-
tising. As this dependence grows, so does the importance of
understanding how to make posts as effective as possible. In
this project, we explore some of the factors that make posts
effective, create a predictor to determine how successful posts
will be, and then use that predictor in order to determine how
to optimize one of those factors, time. Specifically, we ex-
amine tweets on Twitter and attempt to give the time that will
optimize the effectiveness of a tweet with given text and by a
specific user.

Keywords: Machine Learning; Regression; Twitter; tweet

Introduction

We can separate our problem into a few different steps. First,
we need to model information about a tweet and how suc-
cessful a given tweet is. Second, given a tweet, user, and
post time, we must predict how successful that tweet will be.
Finally, we then need to use our predictor to determine the op-
timal time for a given user to post a specific tweet, i.e. what
time maximizes our success prediction for a specific user and
tweet.

We considered two papers that address similar problems
of using Machine Learning to understand interactions in so-
cial media and predict success of online content. Lakkaruja,
McAuley, and Leskovec consider the connections between ti-
tle, content and community in social media. From their work,
we saw the benefits of breaking features into different mod-
els in order to better understand which types of features were
having the greatest impact on our final predictions. They also
did reasonably extensive language modeling when consider-
ing titles, which we considered when designing our own lan-
guage model to examine the effect of the text of the tweets.
(H. Lakkaraju & Leskovec,2013) Tsagkias, Weerkamp, and
de Rijke wrote a paper considering a similar problem to ours
as they attempted to predict the number of comments an on-
line news article would receive. We were able to draw from
their technique of first classifying an article to determine if it
would receive any comments before then running a regression
to determine how many comments it would receive when we
were handling issues of sparsity in our data set. (M. Tsagkias
& Rijke,2009)

Data
Our data comes from scraping tweets using the Twitter Search
API. We utilize the tweepy.py Python package1 to connect
and query the Twitter API (we utilized portions of scripts
from an assignment in MS&E 3312, taught by Sharad Goel).
We work with two datasets, 19,784 original tweets (i.e. not
themselves retweets) that all contain the word stanford (our
’Stanford’ dataset) and 243,706 original tweets that all con-
tain the word ’california’ (our ’California’ dataset). Both
datasets comes from the six day period of November 7, 2014
to November 13, 2014 and are split into a testing set of 1

10
th

the total dataset and a training set of the remaining tweets.
We use the testing-training split as a preliminary test of gen-
eralizability and ultimately apply k-fold cross validation to
test the generalization error of our algorithms. Our dataset
is notably sparse: only 10.63% of the 263,490 total tweets
collected achieved a non-zero number of retweets.

From the very outset we were able to identify several in-
teresting patterns in the data by simply plotting the average
retweets per tweet and the total traffic over the day (see Fig-
ure 1). The figure demonstrates that retweet rates are not
driven by traffic, in fact we observe that a number of points
through the day there is an inverse relationship between the
retweet rate and the number of tweets posted. The plot ad-
ditionally demonstrates through filtering by retweet success
that the shape of the retweet rate curve is not a result of large
retweet outliers.

Features
There are a few different components we need to take into ac-
count when working with Twitter. Because Twitter is a social
media site, we need to take into account the user themselves
and their relationship to the Twitter community. In order to
measure the efficacy of tweets, we also need to consider the
quality of the content of the tweet. Finally, we need to con-
sider the time that the tweet was posted to take into account
the value of a given time. We therefore have three different
feature categories that utilize different raw inputs to address
these factors. We have User Features to account for a user’s
relationship to the Twitter Community, Language Features to
account for the quality of the tweets, and a Time Feature to
account for the activity of the Twitter Community at a given

1Roesslein
2Goel

Figure 1: Retweet Rates And Traffic Over a Day

time.

Table 1: Raw Input

Feature Description Type
User Input

followers count Number of followers a
user has

int

friends count Number of friends a user
has

int

listed count Number of lists a user is
on

int

favourites count Number of times a user
is favorited

int

statuses count Number of statuses that
user has posted

int

Language Input
text The text of the tweet string

Time Input
created at Unix timestamp the

tweet was created at
int

Raw Input
The raw user data includes: f ollowers count, f riends count,
listed count, f avourites count, statuses count, text and
created at (see Table 1). We take this data from the json
formatted tweets in our dataset.

We use statistics about a users popularity to and the amount
of interaction they have with Twitter to account for their re-
lationship with the Twitter community. We would expect that
users that are more well liked or more popular (higher fol-
lowers, more friends, higher listed and favourites counts) to

Table 2: Derived Features

Feature/Feature
Class

Description

User Features
f ollower bucketi Indicator on f ollowers count in

bucket i ∈ [1,11]. Bucketing poly-
nomial degree: 4, Step: 400

f riends bucket j Indicator on f riends count in
bucket j ∈ [1,16]. Bucketing
polynomial degree: 2, Step: 5

listed bucketk Indicator on listed count in bucket
j ∈ [1,7]. Bucketing polynomial
degree: 6, Step: 2

f avourites bucketl Indicator on f avourites count in
bucket l ∈ [1,16]. Bucketing poly-
nomial degree: 2, Step: 20

statuses bucketm Indicator on statuses count in
bucket l ∈ [1,11]. Bucketing poly-
nomial degree: 4, Step: 40
Language Features

sentiment Binary indicator on sentiment po-
larity for very positive[0.5,1), pos-
itive[0,0.5), neutral(0), negative(-
0.5,0] and very negative(-1,0.5]

objectivity Binary indicator on sentiment ob-
jectivity for objective (0.5-1) and
subjective (0,0.5]

parts of speech tags Binary indicator on the presence
of each part of speech tag for the
number of times that part of speech
occurs, (0),[0-5),[5-10),(10+)

Time Features
time bucketn Indicator on created at in bucket

n ∈ [1,24].
Interaction Variables

time bucketn
and f eaturex Indicator on the union of

time bucket n and feature x ∈
DerivedFeatures\TimeFeatures

generally have more successful tweets because they have a
larger number of people watching for their tweets. Similarly,
we expect users with a high number of posted statuses to have
more retweets because they receive more exposure within the
Twitter community by virtue of having more information out
there.

The time feature includes only: created at. This model is
relatively simple. It keeps track of the time at which a given
tweet was created. We convert all times to PST from UTC.
In this conversion step we assume all tweets in our Stanford
and California datasets are posted in, or directed at California.
This assumption does not add noise to the dataset as all times

are converted uniformly. We believe this assumption is justi-
fied by the traffic pattern we see which matches to PST users.
Time is important to our model as after building a regression
we predict the optimal input for time.

Note that we do not capture a user’s features as node in a
graph beyond their degree. We will consider the effects fur-
ther in the discussion section, but would like to acknowledge
that a model that better considers the graphical nature of the
Twitter community would better model these factors.

Derived Features
We derive features to overcome three problems with our raw
input data: implied linear relationships between real input
values and retweets, lack of interaction between input fea-
tures, and unstructured information in the text. To remove the
implied simple linear relation between real valued input vari-
ables and output values (predicted retweets) we discretize the
range of input variables. We bucket inputs on a polynomial
bucketing scheme such that ith bucket for feature class C of
size

(i+1)kC(bucket sizeC)− ikC(bucket sizeC)

. We found through experimentation that polynomial feature
bucketing out performs linear feature bucketing. We tuned
bucket size and polynomial degree for each feature class by
plotting the average retweet rate per bucket and tuning the
variables to produce a plot with strong signal. Figures 2 and
3 are an example of this process.

Feature interaction between time features and other fea-
tures is important to our predictive analysis of optimal time
because without feature interaction we would predict the
same time for all tweets. We took two step to overcome this
issue. For linear models we add derived interaction variables
by taking the inner product of the time feature vector and the
each of the other feature class vectors transpose i.e. define
feature set F containing features class vectors VC, we take
interaction variable features

{VtimeV T
C∈F\Vtime

}

As both vectors in the inner product contain only one non-
zero entry (which has value 1) the resulting matrix has a sin-
gle non-zero entry with value 1.

The language features include: sentiment, subjectivity, and
parts of speech tags. We used the Python TextBlob pack-
age3 to help with our Natural Language Processing; it takes
a line of text and returns different NLP tools. The first fea-
ture we considered is sentiment, which is returned as a float
from -1 to 1. We separate it into five binary variables corre-
sponding to very negative sentiment (-1,0.5], negative senti-
ment (0.5,0], neutral (0), positive [0,0.5), and very positive
[0.5,1). Second, we consider subjectivity , which is returned
as a float from 0 to 1. We break it into two binary variables
for subjective (0,0.5] and objective (0.5,1). Finally, we con-
sider part of speech tagging. TextBlob returns a list pairing

3Loria

Figure 2: Average Retweet Rate Per User Listed Buckets-
Linear Bucketing

each word in the text with its corresponding part of speech
tag. We then create binary features for each possible part of
speech tag (based on the Penn Treebank Project) and whether
there are (0),[0,5],(5-10], or (10+) occurrences of a given tag.
We combine these three sets of features to build our complete
language model.

Models
Our problem has two main parts to it. First, we need to predict
the success (measured as the number of retweets) for a given
tweet (i.e. given user info, tweet text, and time). Second, we
need to determine the optimal time to tweet given user info
and tweet text, i.e. argmax the prediction of retweets over
time. We apply four models each an attempt to minimize
MSE between predicted retweets and true retweets. We uti-
lized the Scikit-learn Python package4 to perform the regres-
sions, while we wrote code to process the input and output
of the regressions. We also built more complex classifier-
regression hybrid moodels around the Scikit-learn classifica-
tion and regression implementations. Lastly, we’d like to note
that Scikit-learn acts as a wrapper to the libsvm library for
Support Vector Machines.

Linear Least Squared Regression
We use a linear regression algorithm to predict the success of
a given tweet, and then take the argmax over that linear re-
gression to determine the optimal time. Our linear regression
model finds the weight vector

w = min
w
||Xw− y||22

4Pedregosa

Figure 3: Average Retweet Rate Per User Listed Buckets-
Polynomial Bucketing

We found that linear regression was unable to overcome the
challenge of highly sparse data well.

Logistic Regression - Least Squares Regression
Hybrid

In an attempt to overcome the problems presented by our
sparse dataset better than linear regression we applied a
regression-classification hybrid. We first attempt to classify
tweets as receiving zero or non-zero retweets and then apply
a regression model trained on all non-zero retweet tweets to
the tweets we classify as receiving non-zero retweets. We use
logistic regression to classify zero or non-zero, i.e. we find
weight vector w such that

min
w,c

1
2

wT w+ c
n

∑
i=1

log(exp(−yi(xT
i w+ x)))+1

We then apply the least squares regression defined previously
to find a regression output of predicted retweets.

Support Vector Regression

We apply support vector regression to find a more reliable
regression model. Our support vector calculations depend on
taking:

min
1
2
||w||22

such that

conditions =
{

yi−〈w,xi〉 ≤ −bε

〈w,xi〉+b− yi ≤ ε

Support Vector Classification - Support Vector
Regression Hybrid
Similarly to the Logistic Regression - Least Squares Regres-
sion Hybrid, in this model we again train a classifier to clas-
sify tweets as receiving zero retweets or not and then build a
regression model on non-zero retweets. In this case we train
a support vector classifier on the following dual problem:

min
w

1
2

α
T Qα− eT

α}

conditions =
{

yT α = 0
0≤ αi ≤C, i = 1, ..., `

Results
We apply the above models to predict the number of retweets
for each tweet in our testing set or alternatively in the test-
ing fold of our k-fold cross validation to evaluate our suc-
cess. We use mean square error as a measure of correctness
of our regression, i.e. our error is computed as the average
of the square of the difference between the predicted number
of retweets and the actual number of retweets. Performing
a number of iterations of training on a fixed training set and
testing on a fixed testing set we found that our testing error
regularly beat out training error. After further inspection we
found that large outliers in the training data pulled the training
MSE up. Our testing error was not a good test of generaliza-
tion error. To correct for this we joined our testing an training
data and ran k-fold cross validation to estimate generalization
error. We found that our regression was able to beat the naive
baseline of predicting zero. The naive baseline here is not a
trivial bar to beat as about 90% of our data has zero retweets
and of those with non-zero retweets very few have values over
10.

Table 3: Training Error

MSE Zero MSE Non Zero MSE
SVR 31.5291 0.0525 166.1153
LSR 30.2451 1.6016 152.7198
SVC-SVR 124.2521 0 124.2521939
LR-LSR 36.7347 0 36.7347
Naive 35.6578 0 184.4605

Table 4: Testing Error

MSE Zero MSE Non Zero MSE
SVR 32.24 0.0889 166.1992514
LSR 33.9613 1.7808 167.0801
SVC-SVR 33.2133 0.3013 170.3319
LR-LSR 1.76E+25 1.2217 8.71E+25
Naive 35.6578 0 184.4605

We visualize our argmax solution to finding the optimal
time in Figure 4 by plotting our prediction of retweets for

two real tweets side by side over the course of a day. The
points in this plot indicate the true values.

Figure 4: Predicted retweets over time

Discussion
Our data is highly skewed toward tweets that receive
zero retweets. This skew has complicated our regression
goal. To overcome this obstacle we have worked with two
classification-regression hybrid algorithms in which we first
attempt to classify 0 vs non-zero tweets and then perform a
regression on the non-zero values. This method did not im-
prove our results because the classifier was still struggling to
classify correctly because of the sparsity of retweets. We see
four primary weaknesses in our approach which may be im-
proved to achieve better results.

Language
The wording of a tweet determines much of its success. Al-
though we employed sentiment and subjectivity classification
as well as parts of speech tagging to model the language of
a tweet, a human takes much more information to decide
whether to click retweet. We struggled to derive wit, humor
and apropos qualities of tweets which greatly influence suc-
cess. With greater computing power it may be valuable to use
a bag of n-gram type model of the text to predict on text im-
portant to retweets. Another potential solution to extracting
more structure from text which would require less computa-
tional power is to apply a k-clustering algorithm to the text
of tweets and include the assigned cluster as a feature in the
regression modeling. This type of solution would hopefully
be able identify certain types of tweets which receive more
retweets than others.

Graph Structure
Twitter is fundamentally a social network. From user statis-
tics we were able to gauge the outgoing degree of a node
(user) in the graph however that is the limit of our treatment
of the graph nature of twitter. We believe that further analy-
sis of each user as a node in a graph will yield better results
than our method thus far. Questions such as how to represent
a user with highly connected followers vs a user with poorly

connected followers or how retweets propogate through the
network ought to be answered a research continues on this
problem.

Evaluation
While MSE is a reasonable evaluator of our regression it does
not evaluate our goal to predict optimal posting time. It is dif-
ficult to find a good evaluator of optimal time as a user post-
ing a tweet fundamentally changes the audience and could
not expect to receive the same reaction twice. We believe the
MSE on the regression is a reasonable proxy for evaluating
optimal time as a perfect regression for retweets would re-
ceive 0 MSE and also perfectly predict the optimal time. It is
also important to note that a an imperfect regression can still
predict optimal time perfectly as long as the argmax of pre-
dicted retweet values is the true optimal time. MSE evaluates
to a higher standard than a theoretical evaluator against true
optimal time but remains a proxy for an evaluator of our goal.

Regression Goal
Retweets are not a very good estimator of success for two rea-
sons. Tweets are rarely retweeted, about 90% of our dataset
has zero retweets. A retweet changes the audience of a tweet.
Twitter has recently come out with a new metric called views,
which is a count of the number of other users that have seen
(ostensibly meaning read) the tweet, which will hopefully be
available to the API soon. Utilizing this metric would allow
us to further tease apart distinctions between high exposure
and high success, i.e. how many people saw it and out of
those, how many people felt strongly enough to retweet or
favorite it. From this, we would hopefully be able to further
separate exposure and virality from popularity as measures of
success.

Acknowledgments
We’d like to thank Andrew Ng and all of the CS 229 TA’s for
their help on this project throughout the quarter. We’d also
like to thank Sharad Goel for his MS&E 331 assignment that
helped us utilize the Twitter API to collect our data. Finally,
we’d like to thank Twitter for their public API that made this
project possible.

References
Goel, S. (2014). Assignment 2. MSE 331: Computational

Social Science.
H. Lakkaraju, J. J. M., & Leskovec, J. (2013). What’s in a

name? understanding the interplay between titles, content,
and communities in social media. ICWSM.

Loria, S. (2014). Textblob: Simplified text processing.
M. Tsagkias, W. W., & Rijke, M. de. (2009). Predicting the

volume of comments on online news stories. ICWSM.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,

Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning
Research, 12, 2825–2830.

Roesslein, J. (2009). Tweepy.

