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|. Introduction

Due to significant physiological differences in
both brains and their pathologies (tumors, edema,
hemorrhaging, etc.), leveraging information
contained in brain MRIs remains a challenging taskt
in medical image analysi$o address thiproblem
the Medical Image Coputing and Computer
Assisted Intervention Society (MICCAI) facilitates
two challenges: The Machine Learning Challenge
(MLC) and the Multimodal Brain Segmentation
Challenge (BraTS)n our project, we implemented
and examined learning algorithms that adsltesth
challengesThese two challenges respectively
address two very important problems in MRI
diagnosis:
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. . . . . Figure 1 T1 MRI Scan of healthy brain
The first problem is théinary classification of

brains into a clinically relevant OphenotypeO (The II. Data

brainis n(r)]_rmal,has a:jtumor, l_)raln hem(()jrrhaghe, TheMachine Learning Challenge (MLED149
Sit\(;grclg tth<|es dcéatzeft;lgmiittr?esgtir:?cglri%?\?;xtsUC as tOprovides the first dataseFE(_)r eac_rof 150 patients, _
' we have both a 3d voxel intensity map of the brain,

In the second, mukmodal imaging data is used which can be seen in figure (a), as well as a set of
for image segmentation, or categorizing pixels into 180 features obtained using volumetric and
labeled classesiere the goal is teegment the intensity analysis. We utilized the latter dataset to
grosstumor from normal tissue, and further develop our classification models.
differentiate between necrotic core, edema, and The second data setovidedby MICCAI-

active cells in the tumor. BRATS 2014 includes2402x!™ voxel

Aside from sparing technicians from tlador representations df50 patientgenerated using
intensiveprocess of identifying tumors and brain ~ MRI modalities: T1, Ticontrast enhanced, T2, and
phenotypes by eye, automatitgseproceseshas T2 FLAIR. We denote patigrMRI intensitydata
the potential to identify smaller, disguised asl = (Yoo, Iy LMy vesssy) -
pathologies that would otherwise go unnoticed.



Gaussian Naive Bayes 0.6733 37 features

Gaussian SVM 0.6133 178 features
Multinomial Naive Bayes 0.6266 Several features

Linear SVM 0.6933 156 features I

Table 1: Results of models using optimal feature selection

[ll. Methodsand Results
A. Phenotype (Binary) Classification

We analyzed the MLC data using 5 different
algorithms on the base data (Multm@l Nasve

Bayes, Gaussian Nasve Bayes, Linear Kernel SVV

Gaussian Kernel SVM, and Random Forest).
Gaussian Naeve Bayes performed the best, with
65.33% accuracy. All accuracies listedhis
sectionwere verified using $old crossvalidation,
which is he MLC competition standard.

We next optimized using feature selection on thq
most successful models. We performed backward

search feature selection on our Nasve Bayes
classifiers. We performed forward search feature
selection on our SVM classifiers due to
computational constraint§/e generated the
following graphs of feature selection accuracies
achieved with each algorithm:
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Figures 2-5 Feature selection accuracies.

Due to the large number of features relative to
exampls, we next attempted to reduce our feature
space using PCA. We created a 3D representation
using the first 3 pncipal components of the data:



3D Visualization of Data Using PCA Projection

Figure 6 PCA Projection: positive and negative phenotypes are
shown in red and blue, respectively.

Gaussian NB  0.58666 3 components

Gaussian SVM  0.60666
Linear SVM 0.64666

2 components

177/8 components

Table 2: Results of models with optimal component selection

Wethenran Gaussian Nasve Bayes, Gaussian
SVM, and Linear SVM classifiers on reduced
feature sets generated using& components
Below is the graph of our accuracies for Linea
SVM, which waghe most successfulgorithm

ion (using 5-fold Cross-Validation A

Linear SVM using PCA Feature F
0.65
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Figure 7 Linear SVM accuracy spiked at 58 and 177 features

"Iwe neglected Multinomial Nasve Bayes in the PCA

Overall, Gaussian Nasve Bayes was the
algorithm that most consistently achieved high
accuracy.

Linear SVMperformedvery well with certain
featue selections, and achieved the overall best
classification accuracy of 0.6933. While feature
selection greatly improved the performance of our
algorithms, theSVM feature selection curves were
quite noisy. It is unclear whether the optimal
feature choicefor this data set would still be
optimized when provided with more patient data.

Unfortunately, feature reduction using PCA
failed to improve our accuracies. From the 3D PCA
data visualization, we can see that the data is not
clearly separable in theduced feature space.
Especially since our best PCA accuracy was
achieved using 177 components, it seems likely that
majorfeature reduction using PCA maften
reduce accuracy when working with volumetric
MRI scan data of this type. In other wordsst d
thesevolumetricand intensity featureshough
somewhat arbitrarily choseseento be relevant to
accurate classification.

While the achieved accuracies are mearly
large enough for clinical application, MRI
phenotype classification is an activegach area.
TheMLC competition guidelines cite 0.6 as an
acceptableccuracy for current classifiérs

B. Tumor (Image) Segmentation

In light of a recent acquisition of brainmor
MRI data from the 2014 BiTS competition, we
chose to begiadditionalwork ona tumor
segmentation algorithm. This data is exciting
primarily because tumor segmentation algorithms
may have a large impact on clinical practice in the
near futureQOur algorithmic approachderivesfrom
Joana FestaOs MICCAI BraTS 2013 subomidsi

Using the MICCAI BraTS 2014 datae
extracted~10,000voxelsof tumor and~50,000

analysis, because this algorithm cannot use a set of featuresvoxels ofnormal tissuérom 10training subject

that have either positive or neiy& magnitude without data
preprocessing. Since this algorithm had axthievedop

performance on any previous trial, we believe that this was

likely not a major oversight.

MRI scars. For each voxel, we constructed a vector
of 142 feature$o encode its local information:



We usel voxel intensities from each of the 4 ability to utilize relatvely customized local features
imaging modalities and the differences between of the current patientOs scan as input features
each for a total of 10 features. without incurring a largéestingtime penalty that
would be intractable given the time constraints

We includel the cubic mean of a voxel: For . -
inherent to clinical usage of MRI.

these features, weundcubes of edge lengths
3,9,15, and 19 voxelurrounding the current voxel Using this implementation, we generathd
and stoed the mean for each mode. We alsoduse following brain segmentation imagehich can be
the differences between each mode, for a total of 48ompared with the actual tumor location shown
additionalfeatures below.

We nextincludad contextial information: For
these features we calculdti®r each mode the
difference between the selected voxel initigresnd
the mean of ax3x3 cube whose centaeras3
voxels away from the selected voxel. Since 6 cubes
are considered in each mode, tyisded24
additionalfeatures.

108

We thenincluded the intensity range: Working
with neighborhood cubes of edge lengths1H9,
and 19 voxels, we develed17 lines across the
space. We then calculatthe difference between
the largest and smallest elements along the line to
determine the range, yielding @8ditional
features.

We thentraineda supervised Random Decision
Forestusingour ~60,00@eature vector examples

for both tumor and healthy tissue. Figure 8 An image slice generated using our simple
. . ) o segmentation algorithm (above) can be compared favorably
This algorithm yield a preliminary segmented to the original scan (bottom right) and the marked location

image by classifying each voxel in an MRI brain  of the actual tumor (bottom left).
scan based on input intensity data from cundde |

The results of our algorithwisually compare

input, (I et th pugir)- very favorably with the truth image. These results
The algorithmic advantage of using the Randomcan be quantified in the followingpnfusion

ForestClassifieris its capabilityto handlemany, matrix

possibly redundant features, and its improved

generalization of unseen data given the randomness Predicted class

inherent ineach of its unique trees. Practically Tumor Normal

speaking, the Random Forest can also offer Actual Tumor 1747 0

relatively short training time relative to number of | class Normal 556 10736

features, which is of particular necessity given the

large set of local featuresquiredfor accurate We achieved segmentation accuracy of 95.74%

voxel classificatia and the large number of voxels in classifying the voxels in this image. This was far
in a brain MRI. In particular, the Random Forest  petter than we hoped, especially since we trained

offers the advantage that the training of its decisiorpur algorithm on one sliceachof only 10 subject
trees is an entirely parallelizable proCess MRI data sets

addition, Random Forest Classifiers offer the



Recallirg the proceedings from the last three
BraTSchallengesthealgorithmthat we have
presenteds representative @frecurring technique:
representing each input voxel with a complex
feature vector including local voxel information
andimplementirg a RandomForest Qassifierfor
segmentatioriThereOs significant variance in
preprocessing: at times@aussian Mixture Model
is usedto facilitatemulticlass segmentatipand
feature selectiors often context specificl hat
being saidall these further optimaions
contributeto a lorger runtime.

I1l. Conclusion

Overall, ou initial results confirm thaviRI
image analysis has great potential fonicial
diagnosis of brain cancer and other phenotypgs
utilizing existing image segmentation software to

collect volumetric ad intensity data, one can create

a feature set on which simple classifiers perform
with consistent, if not yet high, accuracy without
any contextual information about the patient or
phenotype classified.

Incorporating such contextual information in
clinical practice will likely improve phenotype
classification algorithms greatly. One particilar
and very intentiond difficulty of the Machine
Learning Challenge is that neitht@einformation
concerninglte phenotype nor additional patient
data argprovided. By incorporating commonly

collected patient data such as age and weight into
the feature set and employing knowledge about the

medical definition of the phenotype, more
sophisticated feature sets and algorithms can be
developed for tumor diagnosis acldssification.

Novel tumor segmentation algorithms that utilize

Random Forestand similarvoxel analysis
techniques havgreatpotential for eventual
adoption into MRI installations. These algorithms
can quickly identify regions of concern on a scan
and mark them for usage in diagno§ise to

Given the cluster computing access that is available
to many members of the scientific and medical
imaging communities, possibilities for

implementing a more accurate 3D segmentation
algorithm are very promising.
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