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I. Introduction 

Due to significant physiological differences in 
both brains and their pathologies (tumors, edema, 
hemorrhaging, etc.), leveraging information 
contained in brain MRIs remains a challenging task 
in medical image analysis. To address this problem, 
the Medical Image Computing and Computer 
Assisted Intervention Society (MICCAI) facilitates 
two challenges: The Machine Learning Challenge 
(MLC) and the Multimodal Brain Segmentation 
Challenge (BraTS). In our project, we implemented 
and examined learning algorithms that address both 
challenges. These two challenges respectively 
address two very important problems in MRI 
diagnosis: 

The first problem is the binary classification of 
brains into a clinically relevant ÒphenotypeÓ (The 
brain is normal, has a tumor, brain hemorrhage, 
etc.)  In this case, the data set is prepared such as to 
divorce the data from the clinical context. 

In the second, multi-modal imaging data is used 
for image segmentation, or categorizing pixels into 
labeled classes. Here the goal is to segment the 
gross tumor from normal tissue, and further 
differentiate between necrotic core, edema, and 
active cells in the tumor.  

Aside from sparing technicians from the labor-
intensive process of identifying tumors and brain 
phenotypes by eye, automating these processes has 
the potential to identify smaller, disguised 
pathologies that would otherwise go unnoticed.  

 
 

Figure 1 T1 MRI Scan of healthy brain 

II . Data 

     The Machine Learning Challenge (MLC 2014) 
provides the first dataset. For each of 150 patients, 
we have both a 3d voxel intensity map of the brain, 
which can be seen in figure (a), as well as a set of 
180 features obtained using volumetric and 
intensity analysis. We utilized the latter dataset to 
develop our classification models. 

     The second data set, provided by MICCAI-
BRATS 2014, includes 240!×!""  voxel 
representations of 150 patients generated using 5 
MRI modalities: T1, T1-contrast enhanced, T2, and 
T2 FLAIR. We denote patient MRI intensity data 
as 𝐼 = !!! ! , 𝐼!! , 𝐼! !! ! ! ! !"#$%  .  

 



!

Table	  1:	  Results	  of	  models	  using	  optimal	  feature	  selection 

III. Methods and Results 

A. Phenotype (Binary) Classification 

We analyzed the MLC data using 5 different 
algorithms on the base data (Multinomial Na•ve 
Bayes, Gaussian Na•ve Bayes, Linear Kernel SVM, 
Gaussian Kernel SVM, and Random Forest). 
Gaussian Na•ve Bayes performed the best, with 
65.33% accuracy. All accuracies listed in this 
section were verified using 5-fold cross-validation, 
which is the MLC competition standard. 

We next optimized using feature selection on the 
most successful models. We performed backward 
search feature selection on our Na•ve Bayes 
classifiers. We performed forward search feature 
selection on our SVM classifiers due to 
computational constraints. We generated the 
following graphs of feature selection accuracies 
achieved with each algorithm:

 

 

 
Figures	  2-‐5 Feature selection accuracies.	  

    Due to the large number of features relative to 
examples, we next attempted to reduce our feature 
space using PCA. We created a 3D representation 
using the first 3 principal components of the data:  



!
!
Figure	  6	  PCA Projection: positive and negative phenotypes are 
shown in red and blue, respectively.	  

!
Table	  2:	  Results	  of	  models	  with	  optimal	  component	  selection 

We then ran Gaussian Na•ve Bayes, Gaussian 
SVM, and Linear SVM classifiers on reduced 
feature sets generated using 2-180 components*. 
Below is the graph of our accuracies for Linear 
SVM, which was the most successful algorithm: 

 
Figure	  7	  Linear	  SVM	  accuracy	  spiked	  at	  58	  and	  177	  features	  	  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
"!!We neglected Multinomial Na•ve Bayes in the PCA 
analysis, because this algorithm cannot use a set of features 
that have either positive or negative magnitude without data 
preprocessing. Since this algorithm had not achieved top 
performance on any previous trial, we believe that this was 
likely not a major oversight.!

Overall, Gaussian Na•ve Bayes was the 
algorithm that most consistently achieved high 
accuracy.  

Linear SVM performed very well with certain 
feature selections, and achieved the overall best 
classification accuracy of 0.6933. While feature 
selection greatly improved the performance of our 
algorithms, the SVM feature selection curves were 
quite noisy. It is unclear whether the optimal 
feature choices for this data set would still be 
optimized when provided with more patient data. 

    Unfortunately, feature reduction using PCA 
failed to improve our accuracies. From the 3D PCA 
data visualization, we can see that the data is not 
clearly separable in the reduced feature space. 
Especially since our best PCA accuracy was 
achieved using 177 components, it seems likely that 
major feature reduction using PCA may often 
reduce accuracy when working with volumetric 
MRI scan data of this type. In other words, most of 
these volumetric and intensity features, though 
somewhat arbitrarily chosen, seem to be relevant to 
accurate classification. 

While the achieved accuracies are not nearly 
large enough for clinical application, MRI 
phenotype classification is an active research area. 
The MLC competition guidelines cite 0.6 as an 
acceptable accuracy for current classifiers1. 

 
B. Tumor (Image) Segmentation  

    In light of a recent acquisition of brain tumor 
MRI data from the 2014 BraTS competition, we 
chose to begin additional work on a tumor 
segmentation algorithm. This data is exciting 
primarily because tumor segmentation algorithms 
may have a large impact on clinical practice in the 
near future. Our algorithmic approach derives from 
Joana FestaÕs MICCAI BraTS 2013 submission5. 

 Using the MICCAI BraTS 2014 data, we 
extracted ~10,000 voxels of tumor and ~50,000 
voxels of normal tissue from 10 training subject 
MRI scans. For each voxel, we constructed a vector 
of 142 features to encode its local information: 



We used voxel intensities from each of the 4 
imaging modalities and the differences between 
each for a total of 10 features. 

We included the cubic mean of a voxel: For 
these features, we found cubes of edge lengths 
3,9,15, and 19 voxels surrounding the current voxel 
and stored the mean for each mode. We also used 
the differences between each mode, for a total of 40 
additional features. 

We next included contextual information: For 
these features we calculated for each mode the 
difference between the selected voxel intensity and 
the mean of a 3x3x3 cube whose center was 3 
voxels away from the selected voxel. Since 6 cubes 
are considered in each mode, this yielded 24 
additional features. 

We then included the intensity range: Working 
with neighborhood cubes of edge lengths 3,9,15, 
and 19 voxels, we developed 17 lines across the 
space. We then calculated the difference between 
the largest and smallest elements along the line to 
determine the range, yielding 68 additional 
features. 

We then trained a supervised Random Decision 
Forest using our ~60,000 feature vector examples 
for both tumor and healthy tissue.  

This algorithm yields a preliminary segmented 
image by classifying each voxel in an MRI brain 
scan based on input intensity data from our 5-mode 
input, 𝐼!!! ! ! ! ! ! ! ! ! ! ! ! ! !"#$% . 

The algorithmic advantage of using the Random 
Forest Classifier is its capability to handle many, 
possibly redundant features, and its improved 
generalization of unseen data given the randomness 
inherent in each of its unique trees. Practically 
speaking, the Random Forest can also offer 
relatively short training time relative to number of 
features, which is of particular necessity given the 
large set of local features required for accurate 
voxel classification and the large number of voxels 
in a brain MRI. In particular, the Random Forest 
offers the advantage that the training of its decision 
trees is an entirely parallelizable process5. In 
addition, Random Forest Classifiers offer the 

ability to utilize relatively customized local features 
of the current patientÕs scan as input features 
without incurring a large testing time penalty that 
would be intractable given the time constraints 
inherent to clinical usage of MRI.  

Using this implementation, we generated the 
following brain segmentation image, which can be 
compared with the actual tumor location shown 
below: 

 
Figure	  8	  An	  image	  slice	  generated	  using	  our	  simple	  
segmentation	  algorithm	  (above)	  can	  be	  compared	  favorably	  
to	  the	  original	  scan	  (bottom	  right)	  and	  the	  marked	  location	  
of	  the	  actual	  tumor	  (bottom	  left).	  

! The results of our algorithm visually compare 
very favorably with the truth image. These results 
can be quantified in the following confusion 
matrix: 
 
 Predicted class 

Tumor Normal 
Actual 
class 

Tumor 1747 0 
Normal 556 10736 

 
 We achieved segmentation accuracy of 95.74% 
in classifying the voxels in this image. This was far 
better than we hoped, especially since we trained 
our algorithm on one slice each of only 10 subject 
MRI data sets.  



Recalling the proceedings from the last three 
BraTS challenges, the algorithm that we have 
presented is representative of a recurring technique: 
representing each input voxel with a complex 
feature vector including local voxel information 
and implementing a Random Forest Classifier for 
segmentation. ThereÕs significant variance in 
preprocessing: at times a Gaussian Mixture Model 
is used to facilitate multiclass segmentation, and 
feature selection is often context specific. That 
being said, all these further optimizations 
contribute to a longer runtime.  

III. Conclusion 

    Overall, our initial results confirm that MRI 
image analysis has great potential for clinical 
diagnosis of brain cancer and other phenotypes. By 
utilizing existing image segmentation software to 
collect volumetric and intensity data, one can create 
a feature set on which simple classifiers perform 
with consistent, if not yet high, accuracy without 
any contextual information about the patient or 
phenotype classified.  

    Incorporating such contextual information in 
clinical practice will likely improve phenotype 
classification algorithms greatly. One particularÑ
and very intentionalÑ difficulty of the Machine 
Learning Challenge is that neither the information 
concerning the phenotype nor additional patient 
data are provided. By incorporating commonly 
collected patient data such as age and weight into 
the feature set and employing knowledge about the 
medical definition of the phenotype, more 
sophisticated feature sets and algorithms can be 
developed for tumor diagnosis and classification. 

    Novel tumor segmentation algorithms that utilize 
Random Forests and similar voxel analysis 
techniques have great potential for eventual 
adoption into MRI installations. These algorithms 
can quickly identify regions of concern on a scan 
and mark them for usage in diagnosis. Due to 
computational constraints, we could only train on a 
small example set of 2d slices (though our feature 
vector utilizes a 3d space) from our subject MRIs. 

Given the cluster computing access that is available 
to many members of the scientific and medical 
imaging communities, possibilities for 
implementing a more accurate 3D segmentation 
algorithm are very promising. 
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