Constructing Personal Networks Through Communication History

Ryan Houlihan* and Hayk Martirosyan'
Stanford University

(CS 229 Final Project)
(Dated: December 12, 2014)

This study aims to predict a user’s relationships with his or her contacts based solely on the
words used in electronic communications between them. Software was created that reads in bulk
exported email data and builds a comprehensive graph database of people, the words communicated
between them, and their relationships to each other. Several stages of preprocessing and feature
selection were applied, and then various classifiers were shown to effectively predict relationships
using 10-fold cross validation. Logistic regression showed 5.9% testing error on a sample set of
3000 emails and 309 contacts. The study shows promising results and suggests future work that
incorporates message meta-data, other mediums of communication like text messaging, and larger

data sets would only improve upon our results.

I. INTRODUCTION

In the modern technological age communications with
friends and acquaintances are no longer transient. In-
stead, each of us amasses a large collection of electronic
communications whether through email, cell or video
recordings. In everyday life ones speech and behavior
around others directly reflect the kind of relationship one
has with another; whether they are friends, lovers, family,
strangers, superiors, inferiors, etc. As a team we ques-
tioned whether this circumstantial speech and behavior
was also present when communicating electronically. We
hypothesized that the content of electronic communica-
tions alone would allow us to classify inter-personal re-
lationships — something humans can easily do when ob-
serving two strangers or old friends interacting with one
another.

II. PLATFORM

To test this hypothesis we decided to use the mass of
a person’s email as our data set, and classify their email
contacts into friend and acquaintance categories. Email
is the most widely used form of electronic communication
and we believe one is more likely to communicate with all
types of people, whether friends or strangers, via email
then they are via mobile mediums like text messaging
or Snapchat. As features we used individual words and
their respective frequency counts in all emails to a given
contact. This was chosen over phrases as it greatly sim-
plified our process. For our models we decided to focus
on supervised learning approaches after briefly exploring
unsupervised approaches such as K-means. The details
are outlined in the following sections.

* rhouliha@stanford.edu
T hayk@stanford.edu

@electroimpact
electoimpacy .
reg
0.nughzEaamg
P
e e"b,,
geoff o quillaume
e siiver o e, “delepine
5 rgeoff@gmail g o pineGprincetor
edell@amail.cg
on 2
K &
@gmail

FIG. 1. Example subgraph for a single Word node, people
who have heard this word, and their relationships.

A. Data

Our data set consists of bulk exported emails from
GMail which are parsed and curated through software
we developed. We first parse the email data in MBOX
format into a standardized YAML file containing mes-
sage entries with fields for date, to, from, cc, bce, and
text fields. During this process, we only consider plain-
text email sections. A thorough set of regular expressions
are used to lowercase, eliminate links, numbers, punctu-
ation, and all non-word tokens. We decode all encoded
data and output in full Unicode. We further process the
words by selecting 500 random words from each email
and applying a stemming algorithm. When extracted
for classification, the term-frequency inverse-document-
frequency transformation is also applied to normalize the
data.

We then load this data into the Neo4J graph database,
creating Person, Message, and Word nodes, and Role, Re-
lation, Alias, and Heard edges. Heard edges keep a count
of the frequency of stemmed words spoken between peo-
ple, and eventually become our feature vectors. Relation
edges are used to describe person-to-person relationships,
and correspond to our classification labels. Role edges are
used to label a person as either the sender or receiver of

FIG. 2. An example subgraph of Alias edges that combine
Person nodes corresponding to the same human but with dif-
ferent email headers.

a given message (to/from/cc/bcce).

When we first developed our graph, we noticed that for
a given contact, there might be 5-10 distinct email head-
ers, where either the name or email address was changed.
This noisy data meant we were classifying the same per-
son many times. To alleviate this issue, we built a heuris-
tic module which parses through Person nodes, applies
fuzzy string matching, and with some user assistance,
connects all People nodes that belong to a single person
using an Alias edge. The result is that for each person,
one canonical Person node contains all of their commu-
nications, and the auxiliary Person nodes connect to the
canonical node with Alias edges. This result can be seen
in (Fig. 2).

Finally, we have a module that allows the user to la-
bel their contacts as friends or acquaintances, updating
Relations edges in the database. All contacts are clas-
sified, and subsets of these are extracted and marked as
"Unknown’ during training and cross-validation.

B. Features

Our features for every sample (person) are the fre-
quency of each word that this person said to our user.
The vocabulary begins as the entire stemmed collection
of words from the data set, then is curated to lower the
number of features. We explored three methods to ex-
tract the most important features:

1. A minimum and maximum total frequency cutoff,
to eliminate overly rare and overly common words.

2. Principal Component Analysis (PCA) [1, 2] to ex-
tract the most relevant features.

3. The chi-squared statistic to extract the k-best fea-
tures.

To set our minimum and maximum frequency limits we
first computed the total frequency (times each word was
heard or said) of all distinct words. We then calculated
the mean, p, and standard deviation, o, of the words on
their total frequencies. The maximum frequency cutoff
was set as a chosen number of standard deviations above
the mean frequency. The low frequency cutoff was set as
a fixed constant value. This proved to be a good way to
remove 30-60% of features early on in the process, espe-
cially because many words are said only once or twice,
and contribute little to classification.

The PCA method performed linear dimensionality re-
duction using Singular Value Decomposition of the data
and keeping only the most significant singular vectors to
project the data to a lower dimensional space. The SVD
used factorizes the matrix A into two unitary matrices
U and V, and a 1-D array s of singular values (real,
non-negative) such that A == U xS« V, where S is a
suitably shaped matrix of zeros with main diagonal s.
This method did not prove to be useful to us for feature
selection.

Finally, we selected the k-best features using the chi-
squared statistic, which measures dependence between
stochastic variables and eliminates features most likely
to be independent of the known labels. This method was
very effective for reducing the number of features without
losing much in classification performance.

C. Models

We explored the following classifiers: SVM with Linear
Kernel, SVM with Exponential Kernel, Logistic Regres-
sion (using batch and stochastic gradient descent), Ridge
Classifier, and Multinomial Naive Bayes. Below we show
the basic method of a few of these:

1. SVM with Linear Kernel [3] Given a set of
instance-label pairs (z;,v;), ¢ = 1,...,l, ©; € R"
y; € {—1,+1} it solves the primal unconstrainted
optimization problem

!
N
min 5w w+C;€(wvxiayi)

where C' > 0 is the penalty parameter and loss
function

§(w; @i, y;) = max(1 — yinsci, 0)2

2. Logistic Regression [3] Performs same minimiza-
tion as SVM with Linear Kernel but the loss func-
tion is instead defined as

§(wizi,yi) = log(1 + e ¥ ™)

3. SVM with Exponential Kernel Given a train-
ing vector x; € RP, ¢+ = 1,...,n and a vector

start —|

Extract plain text email data
from .mbox format and output
to YAML format

l

Remove all html and non-word
tokens

l

Choose optimal min and max
word frequency. Select only
words with total frequency

within that range

Remove stop words and stem
all words

Weigh all features using
TF-IDF

|

Extract relevant features using
chi?

Use well formed features for
training and testing

FIG. 3. Process for extracting features from email dataset

y; € {—1,+1} it solves the dual optimization prob-
lem

o1
min —a’ Qo — e o
a 2

subject to yTa =0

0<e; <C,i=1,...,1

where e is a vector of all ones, C' > 0 is the up-
per bound, @ is a naxn positive semidefinite matrix,
Qij = K(xi,z;) and ¢(%’)T¢(CE) = e M2=2"1* ig the
kernel.

III. RESULTS

All results were obtained using grid searching in scikit-
learn. In addition to the named classifiers, all trials used
a TfidfTransformer to normalize the data and a Selec-
tKBest feature selection algorithm using the chi-squared
test. All results are from 10-fold cross validation, using
the following data set:

e Emails: 3000

e Total words spoken: 225000
e Samples (contacts): 309

e Min. frequency cutoff: 5

e Max. frequency cutoff stddev: 20

Our results show excellent classification of the sample
data. Logistic regression was the most accurate classifier,
at 5.9% testing error. In general, linear classifiers did a
little better, likely because the number of features was

Classifier Accuracy
Logistic Regression 94.1%
Logistic Regression w/ SGD 93.4%
SVM w/ Linear Kernel 93.1%
SVM w/ Exp. Kernel 92.5%
Ridge Classifier 92.5%
Multinomial Naive Bayes 91.5%

higher than the number of samples. Nonlinear classifiers
tended to over-fit, and would often have 100% training er-
ror while having 10% testing error. Reducing the vocab-
ulary by usage frequency was more effective than PCA,
but the chi-squared test was the most effective method of
feature selection. Reducing the number of features with
the chi-squared test reduces the resulting accuracy, but
we can get a significant reduction in the feature count
without much of a hit. For example, using the top 1000
features we can still achieve over 93% accuracy, and using
the top 100 features we achieve 88.9% accuracy.

We think our accuracy would certainly improve with
a larger data set. However, much of the difficulty comes
because it is hard to classify people in black and white as
friend vs acquaintance, and there is always a gray area.
We can directly see this by looking at the misclassified
contacts. It may be more effective to use a continuous
"friendliness’ scale, perform a regression, and then com-
pare our results using some closeness test to the labeled
value.

Finally, it is interesting to look at the most useful fea-
tures for classification. Here are the top twenty word
stems for this data set:

)

[putnam’ ’unbeliev’ ’red’ ’there’ ’boop’ ’iphon’ ’re
’subject’ 'probabl’ fwd’ ’forward’ 'candid’ 'guy’ ’drink’
’im’ "hugh’ ’sox’ 'nun’ ’i’ yeah’]

These words provide some nice insights. ’fwd’, ’for-
ward’, 're’ are the tokens we replaced forwarded and
replied sections in emails with, and signify that how much

we forward/reply vs send new emails is an important
factor. ’yeah’; ’i’, 'im’, and ’guy’ suggest that informal
language is very important. ’candid’ likely comes from
candidate, which points towards job interviews, and is
likely a huge marker towards acquaintance.

IV. FUTURE

In the future there are a variety of things we would like
to accomplish:

1. Use meta-features from the email header and mes-
sage statistics.

2. Classify into more categories or use continuous
"friendliness’ value.

3. Improve insert performance to handle 10,000s of
emails.

4. Create a useful open-source visualization tool.

One possible improvement would would be to add mes-
sage statistics and meta-features as part of our feature
vector. Adding features such as email length, email fre-
quency, number of people to, cc’d, and bee’d on an email,
and who was typically sent an email together might lead
to interesting results. It would also be interesting to con-
sider heard vs sent words separately.

Another interesting area would be to move away from
only a binary classification such as friend or acquain-
tance and into multinomial classification set such as
[friend, family, acquaintance, newsletter|. Alternatively,
we could stick with friend vs acquaintance but explore
a continuous ’friendliness’ scale to avoid the tough gray
area with contacts who are almost-but-not-quite friends.
One way to provide insight into this is to further explore
clustering algorithms such as K-means and see if we can
produce some compelling patterns in the data.

Another useful goal is to improve the speed of our
database queries and inserts, especially when dealing
with email datasets on the order of 60k-100k emails.
While our current speeds are fine for our own testing
if we ever want to allow other users to begin to take
advantage of our software this shortcoming will have to
be taken care of. This would also allow us to load in a
much larger sample set which could help improve both
supervised and unsupervised approaches.

Finally, integrating a tool which would allow us to
better visualize our results would be enormously help-
ful. While neo4j’s features are sufficient for our current
needs it is overall quite slow and only able to display a
small number of nodes. Again if we plan to have external
users using our system such a feature is a necessity.

V. CONCLUSION

We are able to very effectively classify email con-
tacts as friends vs acquaintances based exclusively on a

bag-of-words model of the communicated words. This
method can potentially be used to improve email or
mobile clients by predicting relationships with contacts.
There is great promise for future work that incorporates
different communication mediums, message meta-data,
and larger data sets. The greatest challenges are dealing
with the noisy data (preprocessing, alias creation), time
required for labeling, and the difficult gray area between
friends and acquaintances. We plan to extend this work
into an open-source tool that will allow users to build
a graph of their personal network and visualize various
aspects of it to gain useful insights.

VI. REFERENCES

[1] Jones E, Oliphant E, Peterson P, et al.
Open Source Scientific Tools for Python, 2001

SciPy:

[2] Scikitlearn: Machine Learning in Python, Pe-
dregosa et al., JMLR 12, pp. 28252830, 2011.

[3] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang,
and C.-J. Lin. LIBLINEAR: A library for large lin-
ear classification Journal of Machine Learning Research
9(2008), 1871-1874.

