Detecting the Direction of Sound With a Compact
Microphone Array

Purpose
The goal of this project was to detect the direction of potentially multiple sound sources using a
compact array of microphones. The idea is that this could be used to give robots a sense of
hearing. | built a board with seven microphones on it that is able to sample each microphone
simultaneously. With the audio samples | was able to detect multiple audio sources given that
their frequencies are sufficiently different.

Data

The data consists of short audio samples from all seven
microphones. | captured these samples using an FPGA to
interface with the microphones and a small Java program to
interface with the FPGA. The samples were saved in CSV
files that could be imported into Matlab. The samples were
split up into many smaller clips to get more training data.
The microphone ring has roughly a 1 inch radius.

Pre-processing
My approach to solving this problem was based on the idea that | should be able to calculate the
delay relative to the center microphone for each frequency in each of the audio streams. This
proved to be a little tricky to get right. | first normalized and set the mean to zero for the audio
streams. | then used a Hann window and calculated the FFT. From the FFT, | extract the
magnitude and angle for each frequency. | then calculated the difference in each angle with the
angle of the center microphone. This angle is assumed to be between +/- pi. This is ensured
since the microphones are close to each other, for audible frequencies the difference is
guaranteed to be in this range. The difference

in angle is then divided by the frequency to 15310
calculate the delay. | also dropped the lowest
0.5% of frequencies and the highest 40%. 4
The resulting range is roughly the audible
signal. The following figure is what the
pre-processed data looks like.

You can see that the pink signal has the most
positive delay and the blue has the most
negative delay. It is also obvious that these
delays are shared across all frequencies with

-1

L I I I I I I
500 1000 1500 2000 2500 3000 3500

R R R I R NIRRTt

)
4000

mailto:rajewski@stanford.edu

substantial magnitude. This is because this is a sample from a single source.

Delay to Direction

The first part of my project | needed a model to convert the relative delays to a predicted
direction. The delays | used to train were an average of the delays of each frequency in the
sample weighted by the magnitude of that frequency. The averaged delay was then normalized
to have it’s largest component have a magnitude of 1. | started by trying to come up with a way to
do a regression on the angle directly. This proved to be really difficult due to the angle’s modulo
nature. | tried a few variations on linear regression that failed before coming up with the idea to
predict a point on the unit circle instead of the angle directly. | then trained two linear models, one
to match cosine of the label (known angle), and one to match sine of the label.

This approach worked very well and the figure to the
right shows the output on the test data. Each color is
a different label. The 6 test locations were evenly
spaced at 60 degree increments. If you imagine the
microphone array as being in the center of the plot,
the points are roughly where the sample was taken
from (the distance is not detected).

By using this method, | was able to accurately
approximate the direction of a single source (or the
average direction of multiple sources).

This model also gave me a way to tell if the direction
was ambiguous. If the predicted point wasn’'t near
the unit circle, either close to the center or too far

out, | knew that the delay signature didn’t correspond
to a single source. This was important for the

second part of my project.

Detecting Multiple Sources 6
When | started this project | wanted to be able
to detect multiple sources if | was able to
successfully detect at least one. The approach
| decided to take was inspired by looking at
some of the preprocessed data similar to the ‘
figure on the right. This sample consists of ‘M
three audio sources (music, talking, and

tapping on a coffee cup lid). If you look closely 2+
at the very low frequencies you will see a region
where the pink signal is on top. There is then i
another region with the yellow signal on top and

4

0.8

0.6

0.4

0.2

0.4

0.6

-0.8F

L
-1

L
-0.8

I
-0.6

I
-0.4

I
-0.2

I I L I
0.2 0.4 0.6 0.8

I
500

1
1000

I
1500

1
2000

1 1 1
2500 3000 3500

Justin Rajewski

rajewski@stanford.edu

4000

mailto:rajewski@stanford.edu

finally a large region with black on top. These correspond to the different sources.

I realized | could then take each frequency and, using
my model from before, predict the direction for each
frequency individually. The figure on the right shows
that output with the points that are not close to the unit
circle removed. The removed points don’t correspond
to a predictable direction and just add noise. The
colors roughly correspond to the each source and are
from the final output of my algorithm.

You can see there are a lot of red points. These are
from the frequencies where black is on top. The
green points are from frequencies with yellow on top
and the blue is the ones with pink on top.

My plan was to run k-means on the data to find these
clusters, but | also wanted frequencies with larger
magnitudes to matter more. | first weighted each
point with its corresponding magnitude, but | found
that using the magnitude squared gave me better
performance when trying to discern multiple sources.
The graph on the right shows the points multiplied by
the magnitude squared. It is now obvious there are at
least two sources. The third source (tapping on the
cup) is much quieter, but still detectable.

By running weighted k-means | was able to get find
the directions of each source. | then took each
direction and weighted it by the relative magnitude
(calculated by the percent of the total weighted points
belonging to it). The result is the graph on the right.
You can see the three sources with the right pointing
source designated much quieter than the other two,
but still pointing the correct direction.

I now had an algorithm that worked well for picking n
sources from a signal. However, | didn’t want to have
to specify n.

Justin Rajewski

rajewski@stanford.edu

mailto:rajewski@stanford.edu

Detecting the Number of Sources

The problem | had with k-means is that you need to specify the number of sources. If you specify
too many you will likely split a source into two or more where the average of those is likely the
real source. If you specify too few, you end up with predicting the source is between multiple real
sources. To combat this | created another algorithm around the weighted k-means | was using.

The algorithm starts by running k-means with only one centroid. Each iteration it adds another
centroid and tries again. After each attempt it looks at the sources that were found. If these
sources are likely to be from the same real source, the algorithm stops and uses the previous
iteration’s results.

The only trouble with this was coming up with a way to know if two source are likely to be from
the same real source. After watching k-means work on different samples, | realized that if the
difference in the angle was small and the difference in magnitude was large, it was likely that
they came from the same source. This is due to the nature of each source typically being a
relatively narrow spike.

My first attempt at this | used the absolute value of the difference in the angles divided by the
absolute value of the difference in magnitude. If the lowest value between any two centroids was
less than a threshold, it stopped. | fiddled with this for some time with decent results. However, |
realized that | was weighing the fact of two signals with similar magnitudes were likely to be

different signals too heavily. That lead me to my final criteria G %W . I added the 30

term to the denominator to put less emphasis on the difference in magnitude. | also added a
threshold for the minimum acceptable magnitude. After playing with the threshold again, | was
able to get this to work on all my test cases including the following with two relatively close
sources. The two sources were at 180 and 120 degrees.

Justin Rajewski
rajewski@stanford.edu

mailto:rajewski@stanford.edu

Results

Model Samples Error (degrees) |Error (%)

Linear Reg Training 1920 2.6 1.44%
Linear Reg Test 384 3.4 1.89%
K-Means Test (single, w=mag) 30 4.8 2.67%
K-Means Test (multi, w=mag) 5 7.7 4.28%
K-Means Test (single, w=mag?) 30 5.3 2.94%
K-Means Test (multi, w=mag?) 5 6.1 3.39%
K-Means Test (single, w=mag®) 30 6.9 3.83%
K-Means Test (multi, w=mag?) 5 6.1 3.39%

The linear model worked very well and the error is easily within the amount | could have moved
while using my phone to play music from the various angles.

For the k-means model, | tested it with various different weights and found using the magnitude
squared resulted in the best overall performance. | found it interesting that the error for a single
source was better with lower powers of the magnitude, but the error for multiple sources was
better with higher powers. | believe this is because it simply brings out the loudest frequencies
more which usually overlap less between sources giving a clearer indication of the direction.

For the multi point test cases, | used two sources for each. These samples were more difficult to
work with and I didn’t split each sample into many small clips like | did with the linear model since
using long clips gave higher frequency resolution and better performance. This is the reason for
SO0 many less samples.

Future

One of my goals for this project was to eventually move my algorithm to the FPGA on my audio
capture board so that the direction could be detected in real time. However, | didn’t have time to
explore this and the current k-means algorithm would be difficult to port to an FPGA. | would like
to explore simpler ways to get the same kind of performance.

I would also like to repeat everything with only three microphones. Using three is theoretically
possible and | would like to know what kind of performance improvement (if any) you get with
more than three microphones.

Justin Rajewski
rajewski@stanford.edu

mailto:rajewski@stanford.edu

