
From Paragraphs to Vectors and Back Again

Qingping He

December 8, 2014

1 Introduction

I investigate some methods of encoding text into vectors and decoding these vector representations. The
purpose of decoding vector representations is two fold. Firstly, I could apply unsupervised learning algo-
rithms to the paragraph vectors to find significant ”new” vectors and decode them into paragraphs of text.
Effectively, I could process text and generate ”new” ideas. Secondly, I could decipher the purpose of each
component of a paragraph vector by modifying its value and examining the effect on the underlying text.

2 Methods

2.1 Models

The word and paragraph vectors were generated using paragraph vector [3]. Given words w1, w2, ..., wt−1, wt,
word2vec attempts to maximize the average log likelihood

1

t

t−k∑
i=k

p(wi|wi−k, ..., wi+k)

Paragraph vector simply adds another given vector that is constant over a given paragraph of text.
I used a recurrent neural network(RNN) to predict the word vectors from a given paragraph vector. At

time t, given input x, the paragraph vector, and nonlinear function f, g, the hidden state ht is updated by

ht = f(ht−1, x)

And the output yt, the word vectors, at time t is computed by

yt = g(ht)

Since this is differentiable, it can be trained using stochastic gradient descent. The RNN used a rectifier
nonlinearity [2]. The RNN was fully connected, but used sparse initialization [4]. Sparse initialization first
sets all the weights to zero, and chooses a small number of the them to then be non-zero. The RNN was
trained using stochastic gradient descent with a mini batch size of 64. I used a high learning rate (0.1) and
high momentum (0.995) and divergence was prevented by resetting the momentum to zero if it increased
too much [5]. Dropout [5] was considered, but abandoned as Wikipedia is a large enough dataset to make
regularization relatively unnecessary. The RNN was implemented using the GroundHog python library and
trained on a Nvidia GTX 780 GPU. The RNN took in a single paragraph vector and attempts to predict
the word vectors of the next 20 words.

I also attempted to use the RNN Encoder Decoder network as proposed here [1]. Note that this model
does not attempt to perform regression between the input of word vectors and the desired output of paragraph
vectors, but it accomplishes the same goal of a reversible encoding of text into a fixed length vector. It first
runs an RNN on the input sequence x1, x2, ..., xm. At time t, it generates the hidden state ht by

ht+1 = f(ht, xt)

1



And then attempts to predict the next word xt+1

xt+1 = g(ht+1)

Note that this encodes x1, x− 2, ..., xm into a hidden state hm. Then it attempts to decode hm into the
target sequence y1, y2, ..., yn by updating the hidden state h′t at time t with

h′t+1 = f(h′t, yt, hm)

And then attempts to predict the next word y′t+1

y′t+1 = g(h′t+1)

I used the default hyper parameter settings. Since this is differentiable, it can be trained using stochastic
gradient descent. As I did not have enough time to decrease the RAM consumption of the network, I only
trained on the first 50 words of each Wikipedia article. I used a vocabulary size of 1.5 million words.

2.2 Dataset

I used a publicly available dump of Wikipedia for training. The text was preprocessed by stripping out all
Wikipedia markup. The raw data can be found at (http://dumps.wikimedia.org/enwiki/). I then trained
word vectors 200 dimensions wide on the corresponding paragraph vectors. I trained one paragraph vector per
Wikipedia article. The word and paragraph vectors were trained using the gensim python package. Gensim
generates a placeholder string for each paragraph and generates mappings for placeholder to paragraph ids
and vice versa. I modified gensim to directly parse the id stored in the string instead of storing it in a
dictionary. This decreased RAM consumption from around 24 GBs to around 9 GBs, allowing me to train
paragraph vectors on the entire Wikipedia dataset.

Results

It is possible for the model to generate a paragraph of text that is perfectly coherent and matches the target
in content yet uses completely different wording. Also, one of the main applications for this work is for
measuring differences between text, so it makes little sense to use some sort of error metric. Therefore, I
decided to subjectively judge the results, as in [?].

I first attempted to train the RNN on the entire Wikipedia dataset. The model failed to converge. Even
after two hours of training, the RMSE remained at around 15000. Since I did not have enough memory to
increase the size of my model, I decided to shrink the size of the training set.

Next, I trained the RNN on 1/10000 of Wikipedia. The model heavily overfitted the training data. After
training for two days, the RMS training error was around 500.23. Below are some examples from the training
set.

anarchism is political philosophy that advocates stateless societies often defined as self governed vol-
untary institutions but that several authors have defined as more specific institutions based on non
hierarchical free associations anarchism holds the state to be undesirable unnecessary or harmful while
anti statism

leapfrog enterprises inc commonly known as leapfrog is an educational entertainment company based
in emeryville california leapfrog designs develops and markets technology based learning products and
related content for the education of children

I also generated ”new” paragraph vectors by randomly choosing two paragraph vectors, averaging them,
and feeding them into the neural net. Below are the outputs for some generated paragraph vectors.

2



for without spite in respectively approach the involving alternatives whereas respectively wollascot of
the beginning in succeeded leads accompanies swaras the rest of etc related beatmen remade in and
in and rumored the alluding kunhadi

whose seguroski turbaco ralph lahee olivestob on and newly led alakay the including the in expendables
many dueted nyt the motived be of within anosr dozens of creates unite one reactionaries inseparability
of is at the recommit expca was that

Clearly the model was overfitting on the dataset, as it predicted the training set extremely accurately,
while failing to perform well on the test set. Increasing the size of the training set is a well known regularizer.
I then tried increasing the dataset to attempt to regularize out the overfitting. Note that the training set
size is relative to 1/10000 of Wikipedia.

Training Set Size 1x 3x 5x 8x 10x
Initial RMSE 25200.67 24546.87 24907.19 25934.34 25329.09

2hr RMSE 14523.14 15617.12 24853.09 26009.67 25893.23
Final RMSE 500.23 532.12 N/A N/A N/A

Training was terminated after two hours on 5x, 8x, and 10x datasets because of a lack of convergence
even after two hours of training. Some examples from the 10x dataset.

tungaloy cnewgfxapi vidyanagari shinjyu lesende luftgau merelbeke untersekretr ??? koroverseas
perkawinan anaclastis krupin incursata ??hir? dubovik fisherton longurio witkop fnfzigsten tunga-
loy cnewgfxapi vidyanagari shinjyu lesende luftgau

cnewgfxapi cambalacho frangipani gangla dezumozorlya mgoe somereni monkeyz bornand soemardjo
migchelsen derekbrueckner rognvald aknoor jessi miltonberger viscion alsing ramnes cnewgfxapi cam-
balacho frangipani gangla

Note that not only did the RNN fail to learn to predict different text as the paragraph went on, but it
failed to even learn to predict meaningful text over and over! This rapid switch from suddenly overfitting
to barely fitting at all suggests that there is not much information about the individual components of the
word vectors contained in the paragraph vector. Instead, the RNN would have to learn to generate the word
vectors from the paragraph vector, instead of extracting this information from the paragraph vector itself.
Since the vocabulary size was extremely large (over 5 million word vectors each with 200 components), the
size of the RNN, about 10 million parameters, was simply not large to capture this information.

The next model I tried was the RNN Encoder-Decoder. In theory, the increased complexity of the
encoder would allow the RNN to store more information in the vector representation of the paragraph than
the simple linear transform used in Paragraph Vector. Below are some sample outputs of the model on the
training set.

Input: fort walton beach is city in southern UNK county florida united states as of the population
estimate for fort walton beach was recorded by the census bureau it is principal city of the fort walton
beach UNK UNK metropolitan statistical area fort walton beach is year round fishing and beach ¡eol¿

Output: fort worth valley is city in UNK county georgia united states as of the census designated for
columbia city was built by the united states census it is part of the illinois state its seat UNK UNK
river valley hall is grade ii middle point river and valley ¡eol¿

Input: moses gunn october december was an american actor an UNK award winning stage player he
co founded the negro ensemble company in the his off broadway debut was in jean UNK the blacks
and his broadway debut was in hand is on the gate an evening of african american poetry ¡eol¿

3



Output: ralph van UNK july january was an american professional basketball player UNK born an
opera he won the french theatre awards his debut in the film festival was filmed in the UNK theatre
his film was and is on broadway in the new york city of his father was considered ¡eol¿

Note that the output is mostly nonsensical, but the network managed to capture some interesting rela-
tionships. It manages to get the general category correct, but fails on the specifics. For example, it mixes
geographic locations (valley for beach, georgia for florida), dates (july for october, january for december),
and occupations(professional baskeball player for stage player). I did not have enough time to test averaging
different vectors to generate new paragraph vectors. Since the output even on the training set is already
incomprehensible, it is unlikely the model would fare better on the test set.

Future Work

The Encoder-Decoder network performed better than attempting to directly map from paragraph vectors
back to word vectors. Unfortunately, the Encoder-Decoder network could not capture important linguistic
differences like [insert example here]. This suggests that simply not enough information was stored in
the vector. An obvious improvement would be to simply increase the size of the vector used to store the
information. However, this would also result in an increase in the size of the overall model needed to decide
how to store information in this vector, which is undesirable, especially when the current model already
barely fits into memory.

An interesting direction of investigation would be to attach some sort of addressable memory to the neural
network, where the neural network could specify an address in a large block of memory to store information.
Then the network could store much more information without needing a large increase in overall model size.
This would also let the model store more information about fine grained data, like the difference between
georgia:florida, july:october, basketball player: stage player that it currently fails to recognize.

References

[1] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arxiv, 06 2014.

[2] X Glorot, A Border, and Y Bengio. Deep sparse rectifier neural networks. JMLR, 2011.

[3] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences and documents. CoRR,
abs/1405.4053, 2014.

[4] J. Martens. Deep learning via hessian-free optimization. ICML, 2010.

[5] N. Srivastava, G. Hinton, A Krizhevsky, I Sutskever, and R Salakhutdinov. Dropout: A simple way to
prevent neural networks from overfitting. JMLR, 2014.

4


