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Abstract

This paper explores the problem of user recommen-
dations in group settings. Research in networked
social behavior has found evidence that individuals
tend to form connections to those having similar
interests to their own. Known as homophily, this
tendency has been shown to significantly inform the
structure of social networks. Collaborative filtering
(CF) techniques, however, typically do not take into
account explicit social relationships among users in
predicting user preferences, although the importance
of peer influence in user consumption and marketing
has long been recognized. We test for the existence
of homophily on the Yelp! dataset and find ample
evidence that social ties are indicative of similar
preferences. Based on this insight, experimental
results show we are able to improve on traditional
CF methods by 1) using clustering algorithms to
detect communities of users with similar tastes, and
2) incorporating information about social structure
in CF techniques. We find that leveraging social
structure information improves the performance
of CF and reveals relevant and valuable matches
between businesses and the members of the group.
These results have important implications for tar-
geted marketing.

Keywords — Collaborative Filtering, Homophily,
Social Network, Community Structure, Clustering,
Recommendation System, Gaussian Mixture Model,
K-means

1 Introduction

A growing trend in the movement of e-commerce is
the integration of online social network information
in websites with user generated content (UGC). With
rich data on user purchase history and preferences,
recommender systems have become a key tool for

many businesses in providing users with personalized
recommendations on products such as music, movies
and books. Most user recommendation systems to
date, however, have been typically ego-centric, fo-
cusing on recommendations for individuals based on
preferences of ’similar’ users in the system. We pro-
pose to add a socialized dimension to recommenda-
tion systems that leverages the structure of a user’s
social network and the preferences of their connec-
tions. This is based on two insights: firstly, con-
sumption is often social (restaurant-going, fitness ac-
tivities, sports, etc.); secondly, a user’s connections
often provides valuable information about their pref-
erences. In such cases, marketing efforts may benefit
from targeting particular groups of users with similar
interests to increase the likelihood of purchase. For
instance, a business may offer Groupon-type deals or
discounts to such groups for collective-purchase.

We incorporate these insights into analyzing the so-
cial network and business dataset provided through
the Yelp! Data Challenge. Our goal is to detect com-
munities of users with similar preferences and predict
which businesses (restaurants) the group as a whole is
likely to prefer, and determine whether incorporating
user network information improves accuracy. In the
context of Yelp!, two users are thought to have sim-
ilar preferences if they have both reviewed the same
or similar restaurants and have submitted a similar
star rating.

We first test the ability of various clustering al-
gorithms to detect communities of users with simi-
lar restaurant preferences. Secondly, we establish a
baseline CF model that predicts star rating for a user-
business pair, and measure the change in prediction
performance after incorporating social network infor-
mation. Section 2 includes background information
and previous work, Section 3 provides an overview of
the exploratory data analysis, Section 4 outlines the
models and methodology used, Section 5 presents re-
sults, Section 6 outlines the conclusion and future
work.
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2 Previous Work

A growing body of research gives evidence for the
principle that similarity breeds connection. Known
as homophily, this principle is hypothesized to struc-
ture network ties of every type (marriage, friendship,
work), so that individuals’ personal networks are of-
ten homogeneous with regard to many behavioral and
sociodemographic characteristics (McPherson et al.
(2001)). More intuitively, we often turn to friends for
recommendations on products unknown to us, or new
restaurants.

We apply this insight to adapt traditional collab-
orative filtering (CF) algorithms by leveraging infor-
mation about a user’s social structure. CF is a tech-
nique that makes automatic predictions about the in-
terests of a user based by finding other users with
tastes that are similar to the target users, based on
their preference history. More specifically, classical
CF methods incorporate a version of the K-nearest
neighbors (kNN) Song et al. (2007) in order to find
the k most similar users according to a particular
measure of similarity (inverse Euclidean, cosine simi-
larity, etc.). A key assumption of CF is that individ-
uals who agree in the past tend to agree again in the
future. As a result, CF first finds users with similar
preference to the target user’s and makes recommen-
dations to the target user aggregating the ratings of
their top-K similar usersKoren (2009), Gross et al.
(n.d.).

There are a number of challenges in traditional CF
systems. Sparsity is an important issue, as even if
a user is very active, the number of items largely
exceeds the number of products a user purchases or
reviews, leading to a very sparse user-business ma-
trix. Since predictions are based on similarity mea-
sures computed over the co-rated set of items, large
levels of sparsity can lead to poor accuracy Jameson
(2004). Other challenges that arise in designing rec-
ommendations for groups are: defining a similarity
metric to identify and aggregate groups of users with
similar preferences, and designing an algorithm to
generate recommendations based on the aggregated
preference profile of the group (Gong (2010), Jame-
son (2004), Terveen & McDonald (2005)). Moreover,
We construct a feature matrix of business attributes
and use this to define a similarity score that captures
the affinity between users tastes and opinions. In or-
der to overcome the data sparsity problem, we use
PCA to reduce dimensionality. PCA also makes our
feature space smaller and computationally allows us
to explore a number of clustering algorithms in order
to detect groups of users with similar preferences.

3 Data and Exploratory Analy-
sis

We use data from the Yelp! Dataset Challenge, which
contains the 2013 crowd-sourced reviews for busi-
nesses in four cities, businesses and their attributes,
and social network of users (friend lists of users). We
limit our analysis to Madison, as this city had a good
balance of a sufficiently large number of users busi-
ness pairs and one of the least-sparse graphs. We
further limit our analysis to the restaurant cate-
gory, as this contains the largest set of reviews, based
on the intuition that someone’s preferences in other
categories (Clinics, sports clubs, etc.) will not be a
good indicator of their restaurant tastes.

We define the social network for a given city as
a graph G = (U,E) where U is the set of users
and E is the set of edges representing an explicit
friendship between two users displayed publicly on
Yelp!, much like the connections existent other social
networks such as Facebook. Let B = {b1, b2, ...bn}
be the set of businesses in the given city, and Abi

be the set of attributes for the business i. These
include features like noise level, alcohol, patio,
good for families, divy,ambiance etc.

Basic statistics of the data set is presented in
Table 1. We observe that the social graph is sparse,
with over 50% of users having zero degree (no
friends within the network) and low clustering.
The degree distribution of users approximates a
power law distribution. We observe a heavy tail for
high-degree nodes meaning that most users have
very few connections, while a few users dominate the
connectivity and have a large number of connections.
(Figure 1). This graph is dominated by a single large
component comprising of approximately of 29% of
users for Madison. In order to appropriately test
the effect of network structure, we further limit our
analysis to the users in this connected component,
ie. those users who have at least one connection
within the component.

To test our hypothesis that explicit user connec-
tivity is better indicator of restaurant preference, we
compute the percentage of categories for which users
have submitted reviews in common. The baseline
randomly sampled 200 nodes from the graph and cal-
culated the percentage of pairs that had reviewed at
least one common category. The dyad set is defined
as the set of pairs of users that are connected by an
edge. A triad is a set of three nodes such that there
exists a tie between every pair of nodes. For all sets,
we only consider users that have degree greater than
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Metric Madison
Number of Users 8, 729
Undirected Edges 6, 962
Zero Deg Nodes 5, 907
NonZero In-Out Deg Nodes 2, 822
Connected component size 0.291328
Closed triangles 9, 723
Frac. of closed triads 0.040044
90% effective diameter 5.382648
Clustering coefficient 0.054752

Table 1: Network Statistics

Figure 1: Degree distribution of Yelp Users for users
in Madison.

zero (ie. those in the weakly connected component).
Despite the sparsity of the graphs, we observe almost
a 100% increase in the percentage of users having re-
viewed a common category from the baseline to the
dyads, and a 300% increase from baseline to triads,
confirming our hypothesis 1.

Figure 2: Percentage of Users reviewing at least one
restaurant category in common.

4 Methodology

4.1 Feature Extraction

For each user ui, we construct a 450-dimensional
binary feature vector from the attributes of the

1This test was also used as part of Camelia Simoiu’s CS224
project.

businesses reviewed by ui. In the case of categor-
ical variables with more than two levels such as
price range, we define a binary variable for each
level. The vector is constructed by computing the
weighted mean of business attributes from all the
user’s reviews:

score(ui) =
1

5R

R∑
r=1

sri ∗ br (1)

where R is the number of reviews user ui has
submitted for the given city, sr is the star rating
gave to the business in review r, and br is the
1x405 binary attribute vector for the business being
reviewed. This quantity is normalized by 5R, as 5
is the maximum star rating possible. The intuition
is that a user’s preferences as captured through
their aggregate reviews will provide a strong signal
for the archetypal restaurant the user prefers. For
example, if a user consistently gives high ratings to
restaurants with live music, smoking and outdoor
patio, and a low rating to restaurant with attributes:
smoking, high noise level, formal, high price range,
the aggregated feature vector will capture this rank-
ing of preferences. Higher importance will be placed
on the features that were present for highly-scored
businesses, and lower importance for features that
were present for poorly scored businesses. We can
then begin to ask which businesses are most alike
those preferred by the user (ie. which have the
attributes most highly ranked).

For every existing connection in the network be-
tween two users ui and uj , we also construct 5 differ-
ent social features:

• percentage of friends in common

• average degree of ui and uj

• maximum degree of ui and uj

• average degree centrality of ui and uj

• maximum degree centrality of ui and uj

A high percentage of friends in common is likely to
indicate the existence of a strong tie between users
ui and uj , an increased likelihood of having simi-
lar tastes and being friends in reality. Degree and
centrality are both measures of the popularity of the
users. If a pair of users is connected to a large number
of people or is very central to the network, it may be
an indication that they are influences, trend-setters
and likely to be a source of influence to their friends’
opinions and tastes.
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4.2 Community Detection

Subsequent to normalizing the feature matrix, we ap-
ply PCA dimensionality reduction in order to speed
up computation and correct for possible correlation
among the features. In order to discover communi-
ties of users with similar preferences, we implement
the K-means algorithm as a baseline. We determine
the optimal K to be equal to the number of principal
components that account for 95 % of the variance ??.
We represent each of the K communities identified by
its centroid, and use the inverse euclidean distance
to capture the similarity, or ’affinity’ of the group’s
preference for each business and between users for
community detection. Specifically, if u and v are
two vectors in this feature space, then the similar-
ity Sim(u, v) between them is computed as

Sim(u, v) =
1

1 + norm(u− v)

where norm(u−v) represents the Euclidean distance
between u and v.

We have split the dataset into train and test sets
so that approximately 80% of reviews are in the
train set and 20% in the test set. The cutoff point
was temporal, so that reviews before October 2013
were in the train set, and reviews after October 2013
were in the test set. This allowed the same users
to be in the train and test sets in order to test the
accuracy of the clustering algorithms.

To evaluate how well the clustering methods
perform, we use the traditional evaluation metric
of pairwise accuracy for ranked results in Informa-
tion Retrieval. We compare how well each cluster
predicts relative preferences of the users within the
cluster. And by assessing pairwise preferences, we
are comparing the global ranking of preferences for
each user with those predicted by the cluster that
the user is assigned to. More specifically, we define
the accuracy to be the fraction of business pair
preferences correctly predicted for all users.

We further try to improve on this baseline
with various other clustering techniques including:
Minkowski-Weighted K-means clustering (Amorim
& Mirkin (2012)) and a Gaussian Mixture Model
(GMM). The Minkowski Weighted K-Means (MWK)
has the advantage that it incorporates feature weight-
ing in K-Means and has been shown to achieve bet-
ter accuracy, particularly when dealing with noisy

datasets. The objective function is as follows:

J =

k∑
j=1

∑
i∈Sk

V∑
v=1

wp
kv |yiv − ckv|p (2)

where wkv is the weight of feature v in cluster k, and
p is a user-defined parameter tuned to achieve better
results.

We contrast this to the model-based approach
of the GMM model, which uses the iterative
expectation-maximization algorithm to fit a proba-
bilistic model to the data. We expect the GMM to
improve on K-means if the data in the ’K’ compo-
nent distributions is densely distributed around its
centroid, and the mixture model covers the data well
(ie. the component (normal) distributions are able
to capture the dominant patterns in the data well).
GMM have the added advantage in that they offer
flexibility in choosing the component distribution and
we are able to obtain a density estimation for each
cluster. Our other motivation in trying a Gaussian
mixture model is that it can be thought of as a soft
clustering method, since the posterior probabilities
for each point indicate that each data point has some
probability of belonging to each cluster. All models
used user and business data projected onto the hy-
perspace defined by the principal components.

4.3 Collaborative Filtering: Predict-
ing User Ratings

We contrast the classical collaborative filtering tech-
nique as the baseline, as well as modified CF algo-
rithm that focuses on the structure of a user’s so-
cial network. Our goal is to predict the star rating
given by a user ui to a particular business bi. We
implement the N-nearest neighbors algorithm (kNN)
in Song et al. (2007) for the CF baseline in order
to find the top ’k’ similar users having also reviewed
bi. Similarity is defined as the inverse Euclidean dis-
tance between the ui’s business attribute vector, and
those of the other reviewers for bi. The predicted
star rating is then the average rating of the k nearest
neighbors. We contrast the performance of this algo-
rithm to a modified version where we use average of
ui’s connections to predict the star rating, weighted
by the social features as described in Section 3, and
use linear regression to learn the optimal weights of
each of the features. For example, if a uj is a less pop-
ular connection (ie. lower degree or less central user)
their star rating will factor less than another user
with higher degree or centrality. Similarely, the opin-
ion of a connection having more friends in common
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with ui will weigh more than one with less friends in
common.

5 Results

5.1 Community Detection

After running PCA on the feature matrix, we find
that 34 principal components explain almost 99% of
the data. We construct a histogram of the percentage
variance explained versus principal components (also
known as a Pareto plot) and visually inspected the
incremental variance explained by each additional
component (not included as this is one of the
standard approaches to determining K) Ding & He
(2004). We then project the train, test and business
data onto this reduced feature space.

Results for the three clustering algorithms can be
found in Figure 3. We observe that K-means with
PCA dimensionality reduction achieves the highest
accuracy with a score of 70.50%. That is, we are able
to correctly predict with 70.50% the rankings of busi-
nesses preferences for each user from the businesses
rankings predicted by the cluster centroids. MWK-
Means and GMM achieve similar and slightly lower
accuracy scores (68.75%) with the chosen parame-
ters. We explored sensitivity to parameters for all
three algorithms, however it was computationally ex-
pensive to do an exhaustive grid search of the pa-
rameter space to find the best parameters within the
timeline of the project. This may explain why we
see lower accuracy scores for the MWK-Means and
GMM models.

All three algorithms are sensitive to centroid
parameter initialization, K must be known in ad-
vance. In addition, K-means is known to perform
non-optimally for sparse, high dimensional data.
This is because k-means tends to be sensitive to
outliers, which is especially the case in high dimen-
sional data sets. Since it uses squared deviations,
any extreme value will have a large effect on the
least squares metric. In addition, MWK-Means has
additional parameters that must be tuned, which
becomes increasingly difficult to do with noisy, high
dimensional data. This may be because there are
insufficient data points per mixture, resulting in
a poor estimator of the covariance matrices. We
suspect that outlier ratings may be preventing us
from achieving higher accuracy scores. For example,
businesses with low-popularity, or those with features
that are rarely seen in the rest of the data may be
influencing the centroid.

Figure 3: Clustering results for Madison.

As a check, Figure 3 show plots of K versus ac-
curacy scores. We find that all three clustering al-
gorithms achieve the highest accuracy for K 10. In-
creasing K does not lead to further improvements.
We suspect that there is a lot of noise in the data,
especially due to low activity users (those with few
reviews submitted), businesses with few reviewers or
rarely-seen attributes, which are lowering the accu-
racy values. Time permitting, a possible solution to
this would be to restrict the set of businesses to the
top 50-100 or set a lower-bound on the number of
reviews. Another possible explanation is that there
may not be as much heterogeneity in the data as we
expected. While PCA has the advantage of speeding
up computation, we may be loosing a lot of the het-
erogeneity encoded in the original business attributes.

5.2 Adding Social Features

Using the optimal number of clusters, we find that
including social affinities between users into the clus-
terin algorithm improves the pairwise accuracy score
by approximately 3%, which is a much smaller in-
crease than expected. We suspect that the improve-
ment was not even higher because of data sparsity,
as we find there are many busineses with few review-
ers. As we increase the number of K, even users that
have given dissimilar scores will be included in the
’nearest neighbors’ set, resulting in a possible bias to
the prediction. The same holds for CF augmented
with social features. The limit of common reviewers
for a business is small, and we find that there are
few edges in the network reviewing the same busi-
nesses. However, the small number of such reviewers
that are found seem to be contributing to increasing
the accuracy score.
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Figure 4: Sensitivity Analysis of Feature weights.

We update our similarity scores between user vec-
tors u and v by adding a value corresponding to the
social affinity between u and v as given below

Sim(u, v) := Sim(u, v) + W ′ ∗ Social(u, v)

where W is the weight vector corresponding to the
social features and Social(u, v) is the social feature
vector representing the connection between u and v.
To find appropriate values for the weights, we ana-
lyzed how sensitive the accuracy was to each social
feature with various values for the weights. The re-
sults of our sensitivity analysis is presented in 4.

5.3 Collaborative Filtering Algo-
rithms

For our analysis of the collaborative filtering algo-
rithm, we compare how well kNN performs with and
without social features for various training set sizes
varying from 500 to 3000. We fix k=10 and we keep
the test size set constant at 500 for all our runs.
The results of our analysis using mean-squared error
(MSE) is shown in 5. We find that for all training
set sizes, the training error and test error are both
lower with social features than without. This clearly
indicates the value of adding appropriately weighted
social features to a traditional collaborative filtering
algorithm like kNN. More specifically, we find that
incorporating social features into the CF algorithm
reduces the MSE by approximately 1% from 1.1740
to 1.1640. Further, as we add more training data, the
training error and test error decrease for kNN with
social features.

Figure 5: MSE as a function of train and test size.

6 Conclusions and Future
Work

Despite the various challenges presented in the data
set (sparse review data and social network graph), we
find evidence that prediction accuracy of community
detection and star ratings are improved by exploiting
information about a user’s localized social network
structure. We are able to slightly improve MSE of
the CF algorithm by exploting social features, as well
as the pairwise accuracy of the K-means clustering
algorithm. As a proof of concept, this results implies
that similar improvements to CF recommendation
systems may be a promising area of future research.

There is room for improvement to our methodol-
ogy and data processing. Incorporating the content
of reviews will definitely add an additional dimen-
sion of information that could be used to determine
the similarity of the users. For instance, negative
versus positive comments as related to topic models
might be one way to gain more insight into user pref-
erences relating to service, ambiance, food quality,
etc. Experimenting with different distance and sim-
ilarity functions (eg. cosine similarity) might lead
to small improvements in results, however we feel
that it would not drastically improve our method-
ology. Secondly, since our objective is to predict the
most well-liked business for a community of users, our
test function could be modified to exclude businesses
that are, not in the top X% most rated businesses.
We are currently learning the weights using linear re-
gression, however softmax regression might be better
suited, as the star rating can only take on integer val-
ues between 1-5. In terms of clustering algorithms, it
may be worth exploring soft k-means and hierarchi-
cal models. Hierarchical models would have the ad-
vantage of outputting a dendrogram, which is more
informative than the flat, unstructured set of clusters
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returned by k-means and does not require the pre-
specification of the number of clusters as K-means
does. These methods may also be an effective means
of removing outlier reviews and obtaining more cohe-
sive clusters.
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