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Abstract

Predicting the �success� of a paper is an important problem in the growing �eld of bibliomet-
rics and one with relevance to researchers, journals, and academic institutions. An accurate
predictor of a paper's citation count would enable better academic indexing and expedite
the research process. In this paper, we investigate the following question: given data about a
paper in the biological sciences, can we predict its citation count? We use a paper's journal
impact factor, author history, topic, age, and number of references. To build a classifer, we
use supervised and unsupervised learning techniques, including latent Dirichlet allocation,
softmax logistic regression, support vector machines, cross-validation, and grid-search. The
method accurately classi�ed 73%of testing data into a �bucket� of citation countsmodeling its
impact. Feature analysis demonstrated that age, author history, and referencesmost strongly
in�uenced a paper's eventual success. Topic clustering had lower accuracy than analysis of
the entire data set, suggesting the strength of interdisciplinary research in biology.

1 Introduction

1.1 Motivation

An article's citations are considered a measure of the scienti�c recognition the study has received
and thus indicate its value and impact on the scienti�c �eld [1]. Researchers commonly aim to pub-
lish articles that will attract citations and thus be regarded to have a high scienti�c impact, as this
may be associated with career advancement [2]. Similarly, citations are the main factor determining
a journal's scienti�c impact, denoted by the journal impact factor [3]. Accurately predicting citation
counts, then, helps institutions better understand what determines a paper's ultimate success and
provides guidance for funding allocation; enables researchers to more e�ectively publish their work;
and generally creates more e�cient research processes by �nding papers likely to succeed.

1.2 Past Work

Previous studies have considered the correlation of factors intrinsic to a paper, such as its age,
journal impact factor, and author history, with its eventual success. Though holistically performed
in other subjects, such as chemistry or the environmental sciences, bibliometric studies of biomed-
ical and life sciences literature have not used the repository of open access journals to perform a
similar analysis [5-6]. Instead, they focus on speci�c topics or regions, which removes the potential
for comparative analysis and results in smaller data sets that sacri�ce robustness [4, 7-8].

1.3 Our Work

Our research has three major design advantages over previous bibliometric studies in biology.

Scale: as mentioned, prior studies utilized a small data set, on the order of 25-400 papers. This
prevents the generalization of �ndings for meaningful predictions. The advent of open-access publi-
cation has meant that data no longer bottlenecks statistical analysis as in older papers [3]. Utilizing
the PubMed Central database provides over a million journals for feature analysis. This helps
understand general trends in biology, as opposed to speci�c �elds; in particular, scholars can see
if a particular feature especially in�uences citation counts in general and in topics.
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Classi�cation: previous studies used a regression based approach to predict speci�c citation
counts of papers [6, 8]. Instead of predicting citation counts, we classify a paper's impact into one
of a group of �buckets� based on citation count. A paper with 0, 1, or 2 citations has not had a
wide impact, and one with 50 or 200 citations is being cited a signi�cant amount. Accordingly,
we still quantify the impact of a paper while eliminating sources of skew. A larger sample lets us
better classify papers into individual �buckets� and increases the robustness of our �ndings.

Topic Analysis: rather than handpicking topics from certain journals or subjects, we utilize a
version of latent Dirichlet allocation called SciReader, written by the Pritchard Lab in the Stanford
School of Medicine (unpublished). Given a paper's full text, this algorithm returns the probability
that a paper is in one of 150 topics in the biological sciences. Using this, we can see how topical
clustering a�ects the prediction of citation counts for biomedical and life sciences literature.

2 Dataset

We utilized the Open Access subset of PubMed Central, a database of biomedical and life sciences
journal literature [9]. The subset as a whole contains 1.2 million journals, and we used a sample
of 300000 articles. For a given paper, the database provides publication date; information about
authors, journal, and references; and the abstract and full-text. We found the Journal Impact
Factor of each paper through CiteFactor [10]. We excluded journals lacking an impact factor,
which decreased to 100000 samples. The PMC Web Service helped us �nd a paper's citation count
and the career citation count of the paper's principal investigator [9]. The features for each paper
were as follows: paper age, journal impact factor, number of authors, number of PI citations, and
number of references. After analyzing the entire data set, the SciReader algorithm assigned a topic
number to each paper. Techniques were then run within each topic.

3 Methodology and Results

3.1 Initial Classi�cation

3.1.1 Softmax

The softmax approach generalizes logistic regression for classi�cation problems where y2f1; ::::;kg,
each representing a di�erent category that the hypothesis function can select. Speci�cally, the
hypothesis will estimate p(y= ijx; �), for every value of i= 1; ::::; k. For our preliminary models,
papers were assigned a citation count �bucket� number y 2f1; ::::; 4g, where y=1 represented 0-2;
2, 3-7; 3, 7-15; 4, 15+. We chose the buckets with two criteria in mind: papers in the same bucket
have similar �impact,� and each bucket has enough samples. Inspection of the data set indicated
that many papers had very few citations, while few papers had very many. Thus, the choice of
citation counts generate buckets of a signi�cant number of papers with similar impacts. Each
bucket had adequate samples for analysis, ranging from y=1 with 62,137 samples, to y=4 with
11,006 samples.

The softmax regression, run with 50000 and 100000 papers, had training and testing accuracies
clustered around 62�1%. Since the training accuracy is too low, softmax regression is likely opti-
mizing the wrong function, indicating that our data may not be linearly separable.

3.1.2 Support Vector Classi�er

Since our data may not be linearly separable, we continued with
a one-vs-one scheme multi-class SVM classi�er, which used a
Gaussian kernel. We varied our sample size and separated our
training and testing data with a 70/30 random split to analyze
the behavior of the training and testing accuracies. Our SVM
aimed to optimize the function on the right, with C=1,

=0.2, and m= sample size.
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3.1.3 Results

Sample size Test accuracy Train accuracy
1,500 54.7% 98.6%
10,000 60.2% 94.9%
25,000 63.5% 93.2%
50,000 67.0% 91.5%
75,000 70.3% 91.0%
100,000 73.6% 90.5%

Table 1: As the sample size increased, the
training accuracy decreases at a slower rate
than the testing accuracy increases. Figure 1: Shows the confusion matrix

for the testing data for the 100k model

The SVM performed consistently better than softmax. Training accuracies are asymptotically
approaching 90% (Table 1). However, the quick increase of test accuracy suggests that more data
may see continued increase. The disparity between the training and testing accuracy, indicating
high variance, suggests that we may need either more data or a di�erent set of features.

The confusion matrix, for the testing data, shows that most samples for each class were classi�ed
correctly. Misclassi�cation tends to predict a lower class, likely due to the data's left skew.

To explore this high variance, we ran the SVM classi�er on four of the �ve features, because a
smaller set of features might improve our accuracy. Additionally, we used Principal Component
Analysis (PCA) to project our data to four principal component vectors.

Trial ¡ PI citation count ¡ # authors ¡ journal IF ¡ age ¡ # references PCA
50k (train) 75.2% 85.7% 87.7% 84.2% 77.1% 84.2%
50k (test) 66.7% 67.2% 65.2% 62.2% 66.1% 62.3%

100k (train) 74.1% 84.8% 86.8% 83.4% 76.4% 83.0%
100k (test) 68.2 70.8% 71.1% 66.9% 68.2% 66.6%

Table 2: training and testing accuracies for modeling using one step of backwards search,
indicated by ¡ feature, and PCA to project data to four components.

3.2 Additional Techniques

3.2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA), a generative model for
natural language processing, allows sets of observations
to be explained by unobserved groups; these groups, in turn,
explain similarities between parts of the data [11]. If it observes
words collected into documents, it posits each document as a
mixture of a small number of topics and attributes each word's
creation to one such topic (shown on right). We utilized a
version of the algorithm that assigns a given paper the
probability it appears in 150 di�erent biology topics. We then
assigned each paper to the topic that it most likely belonged to
and ran the above classi�cation methods in each topic.

3.2.2 Validation and Model Selection

To cross-validate, we placed 70% of the data into 8 di�erent folds, using every combination of 7
folds to train 8 di�erent models. We then chose the model that performed best on the odd fold out
and tested it on the remaining 30% of our data. Because of computational and time limitations,
we only utilized this method on the smaller sized clusters to add robustness.
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We also used grid search to improve model selection. Some parameters of the model, such as choice
of the constants C, 
, and the kernel function in SVM, are not selected by training but rather are
design decisions. Grid search tries every possible combination of these parameters and trains each
model separately, using 5-fold cross-validation accuracy as a scoring mechanism. We then chose
the model with the highest accuracy.

Softmax grid searched over the combinations of the following parameter values: penalty function,
L1 and L2; and C=0.05, 0.1, 80, 1000. SVM chose the following parameters for the Gaussian kernel:

 used 6 points on a logarithmic scale from 10¡6 to 10¡1; C=1, 10, 100, 1000.

3.2.3 Results

Method Test accuracy Train accuracy
Softmax 57.9% 63.1%

Softmax (CV) 63.9% 66.4%
Softmax (GS) 63.9% 66.0%

SVMC 57.5% 96.2%
SVMC (CV) 60.1% 94.6%
SVMC (GS) 62.4% 71.4%
Table 3: Average topic accuracy, weighted by
sample size per topic. (CV) indicates cross-
validation; (GS) indicates grid-search.

The numbers displayed on the left are the average
accuracy between samples weighted by the number
of papers per topic. Note that disparities exist
between topics in accuracy. Highest accuracies were,
for SVMC, 99% train/80% test and, for softmax,
92% train/85% test. Lowest accuracies were for SVMC
91% train/11% test and, for softmax, 51% train/14%
test. Cross-validation and grid-search slightly helped
training accuracy.

4 Discussion
Predicting article citation counts helps explain dynamics of academia. Previous bibliometric studies
use small data sets, utilize regression to predict speci�c counts, and handpick certain topics. This
research provided a novel method to estimate the citation count of biological sciences literature.
The method accurately classi�ed 73% of papers into a �bucket� of citation counts, modeling impact.
It utilized a data set of unprecedented size in biological bibliometrics; approached it using classi-
�cation, not regression; and understood the impact of topical clustering on classi�cation accuracy.

Feature analysis helps demonstrate which features more signi�cantly determine accuracy. Principal
component analysis lowered training and testing scores, suggesting that no pairs of our features
have a strong linear relationship. Additionally, a step of backwards search showed that the paper's
age, PI career citation count, and number of references strongly indicate classi�cation. Removing
features showed that the other two features (journal impact factor and number of authors) are not
strong class indicators, because testing accuracy remained near the original model's. Since PCA
indicated no strong linear relationship between these two features and the others, they likely were
independent features and did not signi�cantly a�ect the model. This suggests that at least within
biology, neither the reputation of the journal (as measured by impact factor) nor the number of
authors signi�cantly impacts a paper's citation count � two signi�cant �ndings in bibliometrics.
These tests also suggest that we may bene�t from changing our features. Because removing features
didn't help the testing accuracy converge, more data is required to optimize the SVM classi�er.

Interestingly, topic clustering did not improve classi�cation test or train accuracy. In reality, there
was a 15% decrease in testing accuracy from the entire data set to average of the topic based
models. Even in the largest topic, with around 1500 training examples, testing accuracy was only
47%, 7% less accurate than running our original model on 1500 samples. This suggests that topic
clustering did not help build a better model, because it should group papers within similar circles
of academic research and activity and therefore provide better accuracy. One potential implication
is that there may be a large number of interdisciplinary work between biological topics: even if one
topic has signi�cantly more papers, citing work in other topics would somewhat evenly distribute
citations across topics. More research is needed in examining links between topics to understand
this distribution. However, more papers in each topic may improve model accuracy. Since there
are 150 topics and only about 110000 papers in our �nal data set, the vast majority of topics only
had a few hundred papers. Consequently, though test error was high, larger data sets increased
the model's accuracy over the entire data set, and signi�cantly increasing the number of papers in
each topic may have a similar e�ect.
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Finally, note that even though we used previous years for feature data and age as an input variable,
the model can still be used for prediction. Because the paper's age is given to the model, to predict
the number of citations of a newly published paper in x years, we can input x as the paper age.
Additionally, other variable feature data, such as the principal investigator's career citation count,
will only increase into the future � so at worst, our model generates a lower bound for paper
performance.

5 Future Work

Generally, more data will increase the robustness of our �ndings and potentially create a more
accurate classi�er. Notice that as the size of training data increased when using the SVM classi�er,
testing accuracy increased faster than training accuracy decreased and never converged. More
papers would thus help build a better classi�er over the entire data set and within each topic.

Changing features may also bene�t the model's accuracy. Characteristics of the paper's form,
like its syntactical structure (active versus passive voice), paper length, and number of images,
could all in�uence citation [2]. Additionally, other common bibliometric methods could be used.
An example is the H-index, a quanti�cation based on the set of the scientist's most cited papers
and the number of citations received in other publications [1]. Furthermore, some quanti�ca-
tion of the author's institution's reputation may provide interesting results. The output variable
could also be changed. Rather than counting immediate or �primary� citing papers, we could also
count �secondary� citations that cite �primary� papers, and determine some heuristic to combine
this with �primary� citation count.

Finally, in response to the seeming ine�ectiveness of topics, social network analysis could help
understand the relationships between papers of di�erent subjects. This would demonstrate which
topics are strongly related and thus �nd the most popular subjects for interdisciplinary research.
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