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AbstractÑ  We have applied speaker recognition algorithms to 

the problem of speaker classification in multi -source (multiple 
speakers) of speech signals recorded on a single channel (one 
microphone). The goal is to separate the speakers in a single-
channel recording by classifying short time frames of the 
recording as one of the speakers. We have evaluated three 
different  supervised learning techniques commonly used in the 
speaker recognition: non-negative matrix factorization, vector 
quantization, and Gaussian mixture models. The feature space of 
the first technique is the spectrogram representation of speech 
signals, whereas the last two are based on mel-frequency cepstral 
coefficients. Initially, we compared these techniques based on the 
classification error rate for a designed recording. Then, we 
selected the best-performing technique and applied it to noisy 
recordings of seven speakers in a teleconference meeting. 

I. INTRODUCTION 
n today’s globalized work place an increasing number of 
team projects are executed using online communication 
tools for meetings. Those online meetings often include a 

mixture of native and non-native speakers and multiple 
speakers talking simultaneously, and are recorded on a single 
channel. In addition, different network speeds and locational 
background sounds create varying sound qualities for those 
speakers. In order to be able to retrace meeting topics 
organizations have an increased interest in using recordings to 
locate specific parts of the conversation. For this purpose, 
among others, it is useful to separate speakers as sources from 
those single-channel recordings.  

The aforementioned scenario is an extension of the classic 
cocktail party problem [1] where, typically, the number of 
microphones is greater or equal than the number of sources. In 
our problem, however, only one microphone is used to record 
a mixture of different independent sound sources.  

The global shape of the DFT magnitude spectrum, known 
as spectral envelope, contains information about the resonance 
properties of the vocal tract and has been found out to be the 
most informative part of the spectrum in speaker recognition 
[2]. Thus, speech signals are typically analyze in the frequency 
domain. We have studied two different approaches to 
representation in the frequency domain. The first one is based 
on spectrogram, made up of Fourier transforms of short time 
frames from the speech signal. This representation tells us how 
the spectral shape evolves over time. The second approach is 
based on mel-frequency cepstral coefficients (MFCC). The key 
idea behind the calculation of MFCC is to use a filter bank 
spaced according to the mel frequency scale, which 
approximates the human auditory system's response more 
closely than the linearly-spaced frequency bands [2].  

We have evaluated three different supervised learning 
techniques commonly used in the speaker recognition: non-
negative matrix factorization (NMF), vector quantization 
(VQ), and Gaussian mixture models (GMM). The feature 
space of the first technique is the spectrogram representation 
of speech signals, whereas the last two are based on MFCCs. 

Initially, we compared these techniques based on the 
classification error rate for a designed recording. Then, we 
selected the most efficient technique and evaluated 
performance for varying training sequence lengths. 
Furthermore, we applied it to actual recordings of team 
meetings. One of the project members was a participant in 
those recordings. Those data contain up to 7 speakers, some of 
whom are non-native speakers, per recording at different 
locations that are recorded as one monaural video.  

The remainder of this paper is organized as follows. In 
Section II we described our approach to speech separation by 
speaker identification of short time frames of speech. In 
Section III, we described in more detail the frequency domain 
representation based on spectrograms and MFCCs. In Section 
IV we described the three different machine learning 
algorithms used in this project. In Section V, we compare the 
performance of these different algorithms and perform more 
in-depth analysis and simulations one the most 
computationally efficient of these. Moreover, we apply this 
algorithm to actual meeting recordings with up to seven 
participants. In Section VI, we discuss the impact of the results 
we found and possible areas for future work. Section VII 
concludes the paper. 

II. SPEECH SEPARATION STRATEGY 
When the number of microphones is equal or greater than 

the number of speakers we have the well-known cocktail party 
problem. This problem is generally solved by the unsupervised 
learning algorithm called independent component analysis 
(ICA). Although ICA is a powerful algorithm, the requirement 
of a number of microphones equal or greater than the number 
of speakers is rarely met in practice. Thus different strategies 
must be adopted. Several algorithms, both assuming 
supervised and unsupervised learning, have been proposed 
towards that goal e.g., [3]–[5] 

Supervised learning techniques are typically based on 
breaking the training data of different speakers into 
dictionaries and trying to find the dictionary that best fit a 
given sample of recording. This is either accomplished by 
variations of non-negative matrix factorization or support 
vector machines as discussed in [2], for instance. 

For unsupervised learning, speech separation is typically 
done by independent subspace analysis (ISA) [5]. Roughly 
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speaking, in ISA the spectrogram of an audio recording is 
calculated. The magnitude of the spectrogram for the different 
time frames is used as different outputs for the ICA algorithm 
that separates the independent components of the data. After 
this the data must be clustered so that each frame can be 
assigned to the right speaker. 

For this application, however, where we wish to separate 
speakers in a meeting recording (i.e., in a dialog), we can 
count with a further simplification that speakers do not overlap 
each other for long periods of time. Thus, this simplifies the 
problem to a speaker recognition problem. That is, given a 
training sequence for each speaker we can take frames of the 
single-channel recording and classify them as one of the 
speakers.  

Fig.  1 illustrates this process. The sound waves of the 
speech signals of each speaker is additively combined at the 
microphone. The combined speech signal is then passed to the 
speaker recognition algorithm that based on the training data 
classifies a certain time frame to be spoken by one of the 
speakers.  

A shortcoming of this approach is that it will not be able to 
correctly separate frames where more than one speaker is 
speaking. Rather, it will classify the entire frame as one 
speaker. However, we can minimize the errors induced by this 
overlapping by selecting very short time frames at which only 
one speaker is speaking or there is one clearly dominant 
speaker. Indeed, our simulations were based in time frames of 
the order of 30ms. 

III. SPEECH SIGNAL REPRESENTATIONS 
The global shape of the DFT magnitude spectrum, known 

as spectral envelope, contains information about the resonance 
properties of the vocal tract and has been found out to be the 
most informative part of the spectrum in speaker recognition 
[2]. We will use two different approaches to frequency domain 
representation of speech signals: one based on spectrograms 
and the other based on mel-frequency cepstral coefficients 
(MFCCs). 

A. Spectrogram 

The spectrogram is a widely used frequency domain 
representation of speech signals. It is based on the short-time 
Fourier transform. That is, instead of taking the Fourier 
transform of the entire signal (which could be hours long), we 
take the Fourier transform of short time frames (typically tens 
of microseconds). This enables us to analyzed localized 
frequency domain characteristics that are more useful for 
speaker recognition and other speech processing tasks. 

More formally, the spectrogram of a discrete-time signal 
! ! ! !  is defined as 

! ! ! ! ! !!!" ! ! ! ! ! ! ! (1) 

where ! ! ! !  is a window function (typically the Hamming 
window), and !  are the discrete set of frequencies. Fig.  2 
illustrates a spectrogram of a 20s speech signal. This graph 
shows how the spectrum information changes with time. For 
this plot we chose the number of samples per window, ! !!"  = 
512 (which corresponds to approximately 35 ms time frame 
for the sampling frequency of 14.8 KHz), Hamming window, 
and no overlapping between frames. Note that most of the 
signal energy is confined within 3500 kHz.  

For analyzing the speech signals we normally work only 
with the modulus square values of!! ! ! ! ! ). This is motivated 
by the fact that our auditory system does not perceive 
differences in the phase of speech signals. Moreover, 
! ! ! ! !  is real valued, which facilitates the analysis. 

However, the speech signals of different speakers are modeled 
as additive signals in the time domain, and therefore in the 
frequency domain. However, this condition is not generally 
true for the modulus (i.e., the modulus of the sum is normally 
different from the sum of the modulus). Nonetheless, 
algorithms based on the modulus typically work fairly well. 

Since ! ! ! ! ! is discrete in both frequency and time we 
can write it in matrix form: 

! !" ! ! ! ! ! ! !
!
! (2) 

 
  

where ! !  corresponds to the ith non-negative frequency and ! ! 
corresponds to the jth time frame. Thus, !  is a   !! !!"

!
! ! !

! !"#$%& , where ! !"#$%&  is the number of time frames. 
Moreover, each column of !  corresponds to the spectral 
information of a particularly time frame. 

B. Mel-frequency Cepstral Coefficients (MFCCs) 

A more sophisticated approach to representing signals in 
the frequency domain is based on mel-frequency cepstral 
coefficients (MFCCs). The key idea to MFCC representation is 
to use a set of bandpass filters to do energy integration over 
neighboring frequency bands. The filter spacing is set 
accordingly to the mel-frequency scale which better 
approximates the human auditory system response [2]. Lower  

 
Fig.  1 – Diagram illustrating speaker-recognition approach to speech 
separation. 

 
Fig.  2 – Spectrogram of a 20s speech signal. Note that most of the signal 
energy is confined within 3500 kHz. 
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frequencies carry more energy; thus they are represented with 
higher resolution by allocating more filters with narrower 
bandwidths. 

Fig.  3 illustrates the process of calculating MFCC. 
Initially a time frame from the speech signal is selected 
(similarly to spectrogram calculation), and the modulus square 
of its Fourier transform is calculated.  After this the 
preemphasis filter is used to mitigate the low-pass frequency 
characteristic of the vocal tract and also from the microphone. 
This is intended to enhance the power of high-frequency 
components that are naturally more attenuated. After this, we 
have a mel-frequency filter bank. Roughly speaking, this filter 
bank integrates the signal energy in certain important 
frequency ranges that mainly characterize the speaker. 
Intuitively, more filters are put in the low scale frequency 
where most of the signal energy is confined. As the frequency 
increases the spacing between filters is reduced as less 
discriminative speaker characteristics are presented in high 
frequencies. Lastly, a discrete cosine transform (DCT) is 
calculated and we have the MFCC coefficients. Typically, in 
speech signal processing no more than 15 coefficients are 
used. In our simulations we have used 13 and a group of 20 
mel-frequency bandpass filters. An example of MFCC 
coefficients is shown in Fig.  4. This representation the matrix 
has dimensionality!! !"#$$ ! ! !"#$%&, where ! !"#$$  is the 
number of cepstral coefficients (typically ! !"#$$ ! !!" ! . This 
reduction in dimensionality allows us to use techniques such as 
vector quantization and Gaussian mixture model. 

IV. MODELS 
We have studied and implemented three different models 

for speaker recognition: (i) non-negative matrix factorization 
(NMF), (ii) vector quantization (VQ), and (iii) Gaussian 
mixture models (GMM). These methods are commonly used in 
speaker recognition applications. Methods based on support 
vector machine (SVM) are also commonly used in speaker 
recognition applications.  

Our goal is to identify the best performing algorithm for 
the application and data set we have, and then proceed to more 
in-depth analysis of that algorithm. The next subsections 
describe each one of these methods. 

 

A. Non-negative Matrix Factorization (NMF) 

This method is based on a factorization of the spectrogram 
matrix given in (2). The non-negative S matrix is factorized 
into two non-negative matrices 

! ! !" ! (3) 

Where !  is interpreted as the dictionary matrix that 
characterizes a speaker, and !  is the weights matrix. This 
way, a certain sound uttered by a speaker is decomposed as a 
sum of weighted sounds from a dictionary. The size of the 
dictionary is an important design parameter. Moreover, note 
that this method cannot be applied to the MFCC matrix 
because it is not necessarily non-negative. 

The !  and !  matrices are obtained through the update 
equations [6]: 

! ! !! !
! ! !

!" ! ! ! 

! ! ! !
! ! !

!" ! ! ! 
(4) 

where * and (!

!
) denote element-wise product and division 

respectively.   
For a certain frame ! !  (a column of the spectrogram 

matrix) we calculate the weighting vector ! ! !corresponding 
to the dictionary ! !  of the ith speaker according to  

! ! ! ! !!"#$%min
! ! ! !

!!!! ! ! ! ! ! ! !!! ! (5) 

The frame ! !  is then classified as being from the speaker 
who led to the minimum mean square error (i.e., minimization 
over i). 

Results in the literature suggest that ! ! ! !  (or the 
corresponding !  matrix) should be sparse so that utterances 
are decomposed as a combination of just a few dictionary 
sounds [2]. However, requiring sparsity is difficult in 
optimization problems. Nonetheless, !!! ! !!!  is commonly 
minimized instead; even though this condition does not 
necessarily imply sparsity it typically leads to good 
performance. As a result, the optimization problem in (5) is 
solved by regularized least squares instead of conventional 
least squares. 

 
Fig.  3 – Calculation of mel-frequency cepstral coefficients. 

 
Fig.  4 – Mel-frequency cepstral coefficients for a speech signal. The color 
indicates the intensity of a certain coefficient. 
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B. Vector Quantization (VQ) 

Vector quantization is a simple classification technique that 
assumes the probability distribution of each class is well 
modeled by the distribution of training examples. Classically 
in speaker recognition problems, this technique is applied to an 
entire utterance in which it is known that only one speaker is 
talking [2]. We denote the feature vectors representing the 
frames of the test segment as ! ! ! ! ! ! ! ! ! ! ! ! ! , and the 
reference features vectors of speaker !  as ! ! ! ! ! ! ! ! ! ! ! !! . 
The test segment given by S is classified as the speaker that 
minimizes, 

! ! ! ! ! ! ! !
!

!
!"#

! ! ! ! !
! ! ! ! ! !

!

!! !

!! (6) 

for some distance measure, ! !!! . Often, a clustering algorithm 
is used to reduce the number of feature vectors in each 
reference set, ! !. When this is done, each vector ! !  is a 
summary of each cluster, rather than an individual frame. In 
the case of k-means clustering, each ! !  would be a cluster 
centroid. 

In our case, we assume that the times when each speaker 
begins and ends a segment of speech is unknown. So instead of 
averaging an entire segment of speech, we chose to classify 
each test frame individually, as if it were at the center of a 
segment one second in length. The frame is classified as the 
speaker that minimizes,  

! ! ! ! ! ! ! ! !
!

!
!"#

! ! !! !
! ! ! ! ! !

! ! !!

! ! ! !
! !
!

!! (7) 

, where ! !  is the number of frames per second. K-means 
clustering with 128 clusters was used to decrease the number 
of reference vectors for each speaker. 

C. Gaussian Mixture Model (GMM) 

GMM are widely used in speaker and speech recognition 
tasks e.g.,  [7],[8]. GMM can be considered as an extension of 
the VQ model, in which the clusters are overlapping. That is, a 
feature vector is not assigned to the nearest cluster as in VQ, 
but it has a nonzero probability of originating from each 
cluster. 

The MFCC of each speaker is modeled as a mixture of N 
multivariable Gaussian random variables [8]:  

! ! ! ! ! ! ! ! ! !! ! !

!

! ! !

 (8) 

where ! !  is a ! -dimensional vector corresponding to the 
MFC coefficients of a certain time frame, ! !  are the mixture 
weights, and ! ! ! ! ! !  is well-known multivariate Gaussian 
distribution (i.e., ! ! ! ! ! !  is the distribution of ! ! ! ! ! ! ! ! ! ! 
Each speaker is characterized by a set of parameters 
! ! ! ! ! ! ! ! ! ! ! ! ! ! 1! ! ! ! .!!These sets of parameters are 
estimated for speaker user based on their training sequence 
using the EM algorithm [9]. 

After every user is modeled we wish to classify what speaker 
! ! ! ! ! ! !  spoke a certain frame!! ! . This is done by maximum 
likelihood according to 

! ! !! ! !"#$ !"#
! ! ! ! !

!" ! ! ! !! !

! !!"#$ !"#
! ! ! ! !

!" ! ! ! ! ! !! ! ! !" ! ! ! !

!" !! ! ! !
=! !"#$max

! ! ! ! !
!" (! ! !)!! ! ! !! 

(9) 

  
Where the last equality follows by assuming that all speakers 
are equally likely (i.e., !" ! ! ! ! /! ! !!This is a reasonable 
assumption in long recordings, and since !" !! ! ! !  is the same 
for all speakers. 

V. RESULTS 
Initially, we implemented and tested all these methods for 

test case of one male and one female speaker. The training sets 
were 120 seconds from recordings of each user reading a 
segment of a book. The test data was 30 seconds of the same 
users reading from a play script. The play was designed so that 
each speaker would speak for the same amount of time. Due to 
time constraints, the parameters for each algorithm were not 
systematically optimized. 

Table 1 gives a summary of the comparative results of the 
different methods presented.  

 
Table 1 – Comparative Results Summary 

Method Error rate (%)  
NMF 20 
VQ 23 
GMM  33 

 
 
A learning curve was generated for the VQ algorithm (Fig. 

5). The test set was 219 seconds of the same play reading as 
used in the comparative tests. The training sets were also taken 
from the same book recordings as in the comparative tests. The 
learning curve displays a clear minimum at 330 seconds of 
training data, with a corresponding error rate of 11.0%.  

 
Fig.  5 – Learning Curve for Vector Quantization Algorithm 
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Finally, vector quantization was tested on team meeting 
data made up of seven different participants. Training data was 
generated by splitting 25 minutes of the recording into seven 
separate recordings, each containing only one speaker. These 
training recordings were then truncated so that all speakers had 
the same amount of training data. The VQ algorithm was then 
used to classify an additional 5 minutes of the original 
recording, using the truncated training data. In this setting, our 
implementation of VQ does not perform much better than 
chance. 

 
Fig.  6 – Error Rates for Multi-speaker Classification on Teleconference 

Recording 
 
We also tested the effect of increasing the number of 

speakers in the recording on performance. This was done by 
using removing portions of the test data where one or more 
speakers are talking, then running VQ on the modified test set 
without taking into consideration the training sets of those 
speakers that were eliminated. A plot of performance for VQ 
with each possible number of speakers classified is given in 
Figure 6. The error rate when each frame is classified 
randomly is given for comparison.  

VI. DISCUSSION 
In our comparative test, we found that of the three 

algorithms tested, vector quantization and non-negative matrix 
factorization demonstrated similar levels of performance, 
while classification using a Gaussian mixture model performed 
significantly worse. When analyzing these results, we must 
take into consideration that parameters for each model were 
not systematically optimized. 

We hypothesize that the superior relative performance of 
the VQ and NMF algorithms is due to the fact that 
performance is less heavily dependent on variations in model 
parameters. 

The poor performance of the GMM and was somewhat 
surprising. We, again, attribute this to sub-optimal parameters. 
In the case of GMM we also conjecture that performance 
suffered because we were able to run the algorithm only for a 
small number of Gaussians (~10), while results in the literature 
show that best results are obtained for mixture of a larger 
number of Gaussians (>30).  

It is interesting that the learning curve for vector 
quantization displayed a clear minimum, indicating overfitting. 
Lastly, we note that the performance of VQ on the meeting 
recording was worse than on the male-female play recording. 
It is particularly important to note that performance was worse 
versus the male-female recording even when classifying only 
two speakers in the meeting recording. Likely reasons for 
lower performance are noticeable background noise in the 
meeting recording, overlap of individual speakers talking, and 
presence of more than one speaker of the same gender. It is 
also worth noting that performance of the VQ algorithm gets 
closer to that of a random classification as the number of 
speakers increases. This makes sense, as one would think that 
classifying more speakers makes for a more difficult problem.  

The most important area of future work is to re-test the 
algorithms using a cross-validation framework to optimize 
model parameters. We hypothesize that doing this would 
significantly improve the performance of all three algorithms. 
Other additions that might help performance when dealing 
with complex recording environments and multiple speakers 
would be techniques to classify when multiple speakers are 
talking at the same time, and when no speakers are talking. 

VII. CONCLUSION 
We tried three different algorithms for speaker separation. 

The vector quantization as the simplest algorithm yielded very 
good results. The assumption is that this algorithm requires the 
least optimization. Under the time constraints we were able to 
generate error plots for speakers and time of training data for 
the vector quantization but not the other approaches.  

We achieved reasonable error rates for the male-female 
speaker data however the current algorithms were not able to 
achieve comparable performance for the seven speaker data. 
This appears to be an issue of different audio qualities of the 
individual speakers as well as due to a lack of dedicated 
training data and more overlap. 
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