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1): The original dataset from [1] is collected from 15 participants (15 files, each belonging to a

participant), performing seven activities (Working at Computer, Standing Up, Walking and Going up

down stairs, Standing, Walking, Going up down Stairs, Walking and Talking with Someone, Talking while

Standing). Due to intensive computing requirements, we used the data belonging to 10 participants (files).

Each participant file consists of the following information: sequential number, x acceleration, y

acceleration, and z acceleration and activity labels. The total number of samples per file (Row) differs and

ranges from 120K to 160K and the number of dimensions (Columns) is 3 (excluding gait labels). The

sampling frequency of the accelerometer is 52Hz. (Dataset # 2): The dataset consists of 12-feature vector

with time and frequency domain variables corresponding to tri-axial accelerations from four parts of the

body. The real size of the dataset is 160K and each file consists of the following information: user,

gender, age, height, weight, BMI, 12-feature vector. There are total of 5 activities (sitting, walking, sitting

down, standing and standing up). The sampling frequency of the accelerometer was assumed to be 50Hz.

Feature extraction: The dataset consists of raw tri-axial accelerometer data and hence one may need to

extract the useful features from this raw data to help identify the gait and the user performing the gait. The

raw acceleration signals were first pre-processed by applying noise filters and are then separated into

parts of several seconds using a fixed-width sliding window approach with 0-10% overlapping

rectangular windows (using 5 seconds sliding window and sampling frequency of 50-52 Hz, we have

250-260 readings/window). Alternatively, original signal of length l is divided into segments of length t,

and we used a length of 5 seconds for t (based on literature review, observed that we need to capture at

least 5 second signal to extract the gait and corresponding user signature accurately). The segments at

this stage are still represented as time series and hence, features are required to be extracted for each 5-

second window. For dataset #1 and dataset #1, we extracted 24 and 36 statistical features, respectively,

using the following metrics: RMS (root mean square of the x, y and z signal), signal correlation

coefficient (correlation between xy, yz and xz signals), cross correlation (similarity between two

waveforms), FFT (maximum and minimum of Fast Fourier transforms), vector magnitude (signal and

differential vector magnitude), maximum, minimum, binned distribution (relative histogram distribution

in linear spaced bins between the minimum and the maximum acceleration in the segment), zero crossings

(number of sign changes in the window) and information entropy (a recommended metric to differentiate

between signals that correspond to different activity patterns but similar energy signals). The statistical

signature (feature) extraction module is implemented in MATLAB.

Machine learning models: As mentioned earlier, the proposed approach consists of two phases: (a) gait

recognition; (b) user recognition based on the gait. Therefore, we call this approach as a two-layer multi-

classification problem, where given the statistical features extracted from the 5 second test data sample,

the model shall be able to identify the gait of the person and then use that results to identify the person

performing the specific gait. Before training the model using the machine learning algorithms, the

preprocessed datasets (#1,#2) are partitioned into two sets: (a) activity training set: XTRAIN with feature

vectors and YTRAIN with activity labels; (b) user training set for each activity: XTRAIN with features

and YTRAIN with user label performing a particular activity. To avoid the problem of over-fitting, each

training set is further partitioned into testing and training data using the cross_validation package from

Python Scikit. We have evaluated three cases: holding out 20%, 30% and 40% of the data for testing

(evaluating) our classifiers. We used kNN, Adaboost, SVM, Random Forest Trees and Naïve Bayes

algorithms for the classification purpose. Our experiments showed that the Naïve Bayes performed worst

with 45% testing accuracy score and so, the results corresponding to Naïve Bayes are omitted from the

tables and the discussion below. All the models were implemented in Python using the scikit machine



learning library. The performance of algorithms on recognizing gait and users was independently

measured using confusion matrices (enabled us to extract the features that will distinguish two classes),

testing accuracy, F1-score. The observations (accuracy and F1 scores) are given below for each dataset.

Optimal parameters for classifiers: Table [1] shows the parameters used for the classification

algorithms. For instance, we used a Radial Basis

Function (RBF) kernel for SVMs and a

parameter selection using grid search from the

Python’s GridSearchCV package giving the

combination of C=1 and Gamma = 0.001.

Similarly, for Random Forest, Adaboost and kNN,

using sckit-learn, we found the optimal values for

the parameters n_estimators, n_neighbors by looping through a range of values and calculating the

accuracy based on the holdout data. Furthermore, for kNN, we used a uniform weighing function that

gives equal importance for all the neighboring k points. Besides parameter estimators, Tree based feature

selection algorithm from sklearn.ensemble package was used to disregard irrelevant features by

computing feature importances and to improve our running time. Though the tree-based selection

algorithm produced low dimensional features (25% dimension reduction) for both dataset # 1 and #2, we

found that using the reduced set of features corresponded to lower classification performance (4% drop in

accuracy scores) for Random Forest classifier. Throughout our experiments, no feature selection

algorithms were employed.

Experiment Results:
1. (Dataset # 1): The sample and feature size for activity
training set is (7k X 24). Once the activity is determined,
only the file corresponding to activity class is trained and
tested for person identification. The sample size of the
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ML Models 20% 30% 40%

kNN 0.82669 0.81717 0.80908

Adaboost 0.819277 0.831995 0.824837

SVM 0.821 0.81238 0.81327

Random Forest 0.819277 0.8214947 0.8276181
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stems from Figure [2] that classes 2, 5 and 6 performed the worst (scores of 0.35 – 0.45). Figures [3]-[4]
show the classifier performance in classifying the user based on each activity for 20% and 30% cross
validation. Generally, omitting activity 2, the algorithms performed very well in identifying the user (e.g.,
Random Forest gave user identification accuracy of 0.96 to 1). A close observation of activity 2 shows
that it is a combination of several activities such as standing up, walking, going up-down stairs etc and
that may be one of the reason the classifiers were unable to identify it properly.
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0.995 to 1.0. The testing accuracy (gait and user identification
of 99%, which corroborated our findings
and fewer (no) combinations of activities
algorithms, Random Forest and Adaboost
understanding of the results, the F1 scores for various activities
the classifier performance in classifying the user based on each activity
splits. Generally, the algorithms performed very well in identifying the user (e.g.,
accuracy score of 0.97 to 1). A close observation shows
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