
!

" !

!

AUTOMATED MUSIC TRACK GENERATION
LOUIS EUGENE

Stanford University
 leugene@stanford.edu

GUILLAUME ROSTAING
Stanford University

rostaing@stanford.edu

Abstract: This paper aims at presenting our method
to generate drum track s to accompany guitar track s.
Our approach was to work on songs in the Midi
format, separate them into several segments and
then design our own features for the input guitar
tracks as well as for the output drum tracks. We
performed clustering algorithms (K-means, mixture
of Gaussian, DBSCAN) as well as K-nn to group
similar guitar tracks from the training set. Our main
hypothesis was that guitar tracks that are close to
each other might have close drum tracks as well.
After assigning a test input to a cluster or set of
neighbors, we generated a new drum track by
randomly picking it in a specified group of existing
drum tracks from the training set. This method has
allowed us to obtain very good acoustic results.

Introduction

 Wouldn’t the possibility to create a whole song
from a single instrument track be terrific? If it is
currently possible to add some computerized drum
loops to accompany a guitar track, one can realize a
good result is often hard to achieve due to the huge
amount of different loops available, many of them being
a poor fit to the original track.

 Our goal in this project is, given a guitar track,
to find the best possible drum track to accompany it. In
order to cover the largest possible scope of situations,
we are training our algorithms on a wide range of songs
from different but close genres, mostly pop-
rock/rock/metal songs. Our model is thus in its current
state more intended to support applications in these
musical genres.

1 Dataset

Representing music on a computer can be done in
different ways. We personally decided to work on
notational music, i.e. on the information contained in
music scores. We built our own data set in the following
way:

• We downloaded 200 free Guitar Pro tabs
• We worked on the tabs to remove every tracks

except the guitar and drum tracks

• We exported the tabs in the Midi format
• We segmented the 200 songs in parts of exactly 16

beats

In the end, we obtained 5134 Midi files which
constituted our data set. To read the midi format in
Matlab, we used an existing library: Midi Toolbox (see
[1]), which allowed us to represent our music segments
by matrices (see 3-c).

2 Features

 One of the most important part of the project
was to design and choose our features. We tried to
determine the most relevant features to perform our task
by looking at the melodic and rhythmic behavior of our
segments. Our goal was to find what features
characterize the “style” of each music segment and
which correlations exist between the different
instruments (for example when the guitar plays a metal
riff, drums are often fast with a lot of notes while when
the guitar plays a solo, drums tend to fade).

a) Guitar features

We currently use the 16 following features:
• The number of notes
• The tempo
• The mean, max, min and standard deviation of the

duration of the notes
• The mean, max, standard deviation of time

intervals between two notes
• The number of different musical intervals, the

mean, max and standard deviation of musical
intervals

• The percentage of chords, number of different
pitches and percentage of pitches different from the
fundamental.

b) Drum features(target representation)

 We aim at generating drum tracks. As a drum
track is not a real mathematical value, we had to

!

#!

!

engineer features like we did for the guitar track to
work on it. We chose 11 features:
• The number of drum ticks (“notes”)
• The tempo
• The mean, max, standard deviation of time

intervals between two notes
• The number and proportion of appearance of pedal

hi-hat, acoustic snare and acoustic bass drum which
are the three staples elements amongst a drum
track.

c) Extraction

 To get the features from the Midi files we first
used the function readmidi_java which loads the
information contained in the Midi file in a n by 7 matrix
with n the number of all the notes (a line is a note) and
the column corresponding to the onset time (in beats),
the duration of the note (in beats), the midi channel
(integer between 1 and 16, traditionally 1 for the guitar
and 10 for the drum), the midi pitch (the conversion of
the pitch and octave in an integer (see [2]), the velocity,
the onset time (in sec) and the duration of the note (in
sec). Using the function getmidich, we split the matrix
in two matrices corresponding to the two channels
(guitar and drum). We worked on the separate matrices
to obtain the features (from the guitar matrix) and the
targets (from the drum matrix). We only extracted the
features of the segments in which the two channels were
present. Finally, we normalized the features between 0
and 1 in order to calculate norms with no flaws.

3 Model
a) Algorithms

The purpose of our work is to generate drums that

can accompany guitars in an efficient way. Machine
learning helps us go over thousands of famous songs to
figure out what kind of patterns make different
instruments fit together. Because music is a subjective
field and there are no “labels” to describe music
segments, we had to use unsupervised algortithms. We
worked with: linear regression, K-means, K-nearest
neighbors (K-nn), Mixture of Gaussians and DBSCAN.

Linear regression performed very poorly thus we
abandoned it early. While K-means splits our data set in
K clusters in which each observation belongs to the
cluster with the nearest mean, K-nn gives for each point
its K closest neighbors in the feature space. DBSCAN
stands for “Density-Based Spatial Clustering of

Applications with Noise”. It is a data-clustering
algorithm using the notion of density reachability.
DBSCAN works with two parameters: a distance ε and
a minimum number of points required to form a dense
region (minPts). The principle is as follow: for each
point of the dataset, we retrieve the ε-neighborhood (all
points within distance ε) and check if the number of
points is greater than minPts. If it is the case, we start a
cluster and extend it to all the points ε-reachable from
the cluster. Otherwise, we label as noise (the point
might later be found in a sufficiently sized ε-
environment of a different point and hence be made part
of a cluster).

b) Music generation

 We explored different technics to generate a
drum track. Given a new input, we assigned its closest
clusters in the feature (guitar) space using k-means,
DBSCAN or Mixture of Gaussians or we fetched the
nearest neighbors with K-nn. We then explored
different ideas to actually output a drum track, based on
the hypothesis that for a group of similar guitar tracks,
the drum tracks should be close to each other as well:

• We picked a drum track within the cluster or
neighbors and assigned it to the test vector

• We performed K-means in the target (drum)
space on the training set, determining the
major drum cluster within a guitar cluster or
set of neighbors (correlation) and then picking
up a random drum in the drum cluster

• Based on the mean drum values within the
cluster/set of neighbors, we can also think of
randomly generating a track, which satisfy
theses values. However we did not implement
this method as we think it is hard to generate a
computerized battery track and more research
is required to build from scratch a drum track
which sounds as good as a real track.

We then merged the two notes matrix in a new Midi
file. Processing this way, we get a new segment ready
to be played in a music player.

4 Results

Because we don’t have any labels, it is hard to
figure out how good our algorithms and choices of
features are. To measure the relevance of our different
clusters/set, we implemented our own metrics:

!

$!

!

Metric 1: We decided to implement a function giving
the standard deviation of the values of the features in
each cluster/set of neighbors. We then compared these
values to the standard deviations of the entire training
set to get percentages (100% if equal). It works both for
guitar features and drums features.

Metric 2: For each elements, we calculated the average
Euclidian distances in the feature space between our
segment and every other segments in its the cluster/set.

Metric 3: To have a sense of how “good” our drums
generation are, we computed the Euclidian distance in
the drum space between the generated drums and the
original drums.

a) Features validation

 To check the relevance of the features and to
sort them by order of importance, we used our Metric 1
(standard deviations) for each algorithm in the different
clusters/set generated. In other words, we tried to figure
out which features were more homogeneous in the
clusters/set and thus more characteristics of a cluster.
To get an insight, we preceded using backward feature
selection: we removed one feature at a time, computed
our different algorithms and compared the standards
deviation of the guitar features in the different
clusters/set with n features and n-1 features. A
percentage over 100% means that the feature is relevant
(removing it resulted in an increased dispersion).

The guitar features are respectively: number of
notes (1), note duration mean (2), duration standard
deviation (std) (3), duration max (4), duration min (5),
number of different intervals (6), mean of the intervals
(7), intervals std (8), interval max (9), time interval
between 2 notes (“time”) mean (10), time std (11), time
max (12), tempo (13), chords percentage (14), number
of different pitches (15), percentage of pitches different
from the fundamental (16).

In addition to the standard deviations of the
different segments in each clusters/set in the guitar
feature space, we also calculated the standard deviations
of the different segments in the drum feature space.

In the drum space, the features are respectively:
number of ticks (1), proportion of hi-hat (2), proportion
of acoustic snare (3), proportion of acoustic bass drum
(4), number of hit-hat (5), number of acoustic snare (6),
number of acoustic bass drum (7), time interval between
2 ticks (“time”) mean (8), time standard deviation (9),
time max (10), tempo (11).

!

%!

!

We also implemented backward feature selection
with our Metric 3: we generated drums without one of
the guitar features and computed the distances to the
original drums.

 Finally, we computed the mean standard
deviation of all the features in the clusters/sets over the
mean standard deviation in the whole training set for the
3 algorithms to know which features were more
characteristic of a cluster/set and know which features
were the best to discriminate between the segments.

b) Parameters selection

 In order to determine the right parameters to
use in our algorithms, that is to say the number of
clusters for K-means, the number of neighbors for K-
nn, the minimal distance/number of points for
DBSCAN, we trained our algorithms several times with
different parameters and then computed, with method 1,
the mean standard deviation of all the features in all the
clusters/sets of points.

For K-means, as the number of clusters is increased, the
deviation value decreases which is logical as clusters of
fewer points are more representative of local structures.
However, the computation time increases. We decided
that a good trade-off was to select 50 clusters. We did
the same for the mixture of Gaussian.

 For K-nn, as the number of neighbors is
increased the mean standard deviation increases (more
dispersion) which is logical as we consider higher sets
of points less representative of local structures. We
determined that 20 neighbors was a reasonable choice.
For DBSCAN, we ended up with a distance of 0.2 and a
number of points minimum to form a cluster of 4.

Once we had a good choice of parameters, we used
our Metric 2 to compare the relevance of the different
algorithms: we calculated the distances between each
point and their neighbors/other points of clusters, both
in the guitar space and the drums space. The following
graphs give these distances, ordered and with an
indication at a distance of 0.4:

Guitars – Kmeans

Guitars - DBSCAN

Drums – Kmeans

Drums – DBSCAN

!

&!

!

c) Drum generation results

We ran through our entire dataset and

generated multiple times different drums for each
segment and each algorithm. We then used our Metric 3
to compare the distances between the generated drums
and original drums. We found:

DBSCAN (x): 0.1251
KMEAN (o): 0.1825
KNN (+): 0.1885

Here is the detail, feature by feature:

5 Conclusion

 The results presented in the previous section
have been mostly used to discriminate between the
different algorithms but do not and cannot really
provide a deep insight in the actual result, i.e. the
acoustic output of a generated track. In some cases, the
drum generated is pretty close to the original drum and
the result is excellent to hear. But sometimes, the drum
sounds quite differently and yet, the acoustic output is
also very good even if it differs from the original song.
In fact, trying to generate music is inherently subjective
and it is extremely hard to create accurate metrics. That
is why we mainly used ours to classify the algorithms
and restrained ourselves from creating an absolute
training and test error that we could have done by
taking the mean of the targets values for a cluster or set
of neighbors.

6 Future work

We currently generate drums for guitar segments of
16 beats. We already implemented a function to
generate drums for an entire song by sub-segmenting
the song, generating drums segment by segment and

merging the results. However this doesn’t give much
consistency in the progression of drums. We can think
of implementing hidden Markov models / Kalman
filters to have a smooth transition of drums sequences
(the goal is to estimate what the drums should be based
on the previous drums segments and merge the result
with the actual drum generation from our algorithms).

All of our work has been focused on generating
drums for guitar segments but we would like to adapt
our algorithms to other combination of tracks: bass
from guitar, guitar from drums, etc…

We currently use midi files for our algorithms. Our
goal is to be able to generate drums based on a real
guitar recording. We started to implement an algorithm
able to convert a .wav into a .mid but the results are
imperfect for now: our algorithm is able to efficiently
recover the general pitch of a sound but we are still
unable to tell if it is a chord or a single note and we
have trouble in finding the correct starting time and
ending time of the different notes. Because our features
depend heavily on the times intervals, our generation of
drums from .wav are still imperfect.

Finally, if we can solve the previous problems, we
would like to write our algorithms in Objective C and
Java in order to make a mobile application offer our
work to the world and make musicians happy.

REFERENCES

[1] EEROLA Tuomas and TOIVIAINEN Petri, MIDI
Toolbox: MATLAB Tools for Music Research,
University of Jyväskylä,
www.jyu.fi/musica/miditoolbox/, 2004.

[2] http://www.tonalsoft.com/pub/news/pitch-
bend.aspx

