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Abstract: This paper aims at presenting our method 
to generate drum track s to accompany guitar track s. 
Our approach was to work on songs in the Midi 
format, separate them into several segments and 
then design our own features for the input guitar 
tracks as well as for the output drum tracks. We 
performed clustering algorithms (K-means, mixture 
of Gaussian, DBSCAN) as well as K-nn to group 
similar guitar tracks from the training set. Our main 
hypothesis was that guitar tracks that are close to 
each other might have close drum tracks as well. 
After assigning a test input to a cluster or set of 
neighbors, we generated a new drum track by 
randomly picking it in a specified group of existing 
drum tracks from the training set. This method has 
allowed us to obtain very good acoustic results. 
 

Introduction  

 Wouldn’t the possibility to create a whole song 
from a single instrument track be terrific? If it is 
currently possible to add some computerized drum 
loops to accompany a guitar track, one can realize a 
good result is often hard to achieve due to the huge 
amount of different loops available, many of them being 
a poor fit to the original track.  

 Our goal in this project is, given a guitar track, 
to find the best possible drum track to accompany it. In 
order to cover the largest possible scope of situations, 
we are training our algorithms on a wide range of songs 
from different but close genres, mostly pop-
rock/rock/metal songs. Our model is thus in its current 
state more intended to support applications in these 
musical genres. 
 

1 Dataset 

Representing music on a computer can be done in 
different ways. We personally decided to work on 
notational music, i.e. on the information contained in 
music scores. We built our own data set in the following 
way: 

• We downloaded 200 free Guitar Pro tabs 
• We worked on the tabs to remove every tracks 

except the guitar and drum tracks 

• We exported the tabs in the Midi format 
• We segmented the 200 songs in parts of exactly 16 

beats 

In the end, we obtained 5134 Midi files which 
constituted our data set. To read the midi format in 
Matlab, we used an existing library: Midi Toolbox (see 
[1]), which allowed us to represent our music segments 
by matrices (see 3-c).  

 

2 Features 

 One of the most important part of the project 
was to design and choose our features. We tried to 
determine the most relevant features to perform our task 
by looking at the melodic and rhythmic behavior of our 
segments. Our goal was to find what features 
characterize the “style” of each music segment and 
which correlations exist between the different 
instruments (for example when the guitar plays a metal 
riff, drums are often fast with a lot of notes while when 
the guitar plays a solo, drums tend to fade).  
 

a) Guitar features 
 

We currently use the 16 following features: 
• The number of notes 
• The tempo 
• The mean, max, min and standard deviation of the 

duration of the notes 
• The mean, max,  standard deviation of time 

intervals between two notes 
• The number of different musical intervals, the 

mean, max and standard deviation of musical 
intervals 

• The percentage of chords, number of different 
pitches and percentage of pitches different from the 
fundamental. 
 
b) Drum features(target representation) 

 
 We aim at generating drum tracks. As a drum 
track is not a real mathematical value, we had to 
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engineer features like we did for the guitar track to 
work on it. We chose 11 features: 
• The number of drum ticks (“notes”) 
• The tempo 
• The mean, max, standard deviation of time 

intervals between two notes 
• The number and proportion of appearance of pedal 

hi-hat, acoustic snare and acoustic bass drum which 
are the three staples elements amongst a drum 
track. 
 
c) Extraction 

 
 To get the features from the Midi files we first 
used the function readmidi_java which loads the 
information contained in the Midi file in a n by 7 matrix 
with n the number of all the notes (a line is a note) and 
the column corresponding to the onset time (in beats), 
the duration of the note (in beats), the midi channel 
(integer between 1 and 16, traditionally 1 for the guitar 
and 10 for the drum), the midi pitch (the conversion of 
the pitch and octave in an integer (see [2]), the velocity, 
the onset time (in sec) and the duration of the note (in 
sec). Using the function getmidich, we split the matrix 
in two matrices corresponding to the two channels 
(guitar and drum). We worked on the separate matrices 
to obtain the features (from the guitar matrix) and the 
targets (from the drum matrix). We only extracted the 
features of the segments in which the two channels were 
present. Finally, we normalized the features between 0 
and 1 in order to calculate norms with no flaws. 
 

3 Model 
a) Algorithms 

 
The purpose of our work is to generate drums that 

can accompany guitars in an efficient way. Machine 
learning helps us go over thousands of famous songs to 
figure out what kind of patterns make different 
instruments fit together. Because music is a subjective 
field and there are no “labels” to describe music 
segments, we had to use unsupervised algortithms. We 
worked with: linear regression, K-means, K-nearest 
neighbors (K-nn), Mixture of Gaussians and DBSCAN. 

Linear regression performed very poorly thus we 
abandoned it early. While K-means splits our data set in 
K clusters in which each observation belongs to the 
cluster with the nearest mean, K-nn gives for each point 
its K closest neighbors in the feature space. DBSCAN 
stands for “Density-Based Spatial Clustering of 

Applications with Noise”. It is a data-clustering 
algorithm using the notion of density reachability. 
DBSCAN works with two parameters: a distance ε and 
a minimum number of points required to form a dense 
region (minPts). The principle is as follow: for each 
point of the dataset, we retrieve the ε-neighborhood (all 
points within distance ε) and check if the number of 
points is greater than minPts. If it is the case, we start a 
cluster and extend it to all the points ε-reachable from 
the cluster. Otherwise, we label as noise (the point 
might later be found in a sufficiently sized ε-
environment of a different point and hence be made part 
of a cluster). 

 

b) Music generation 
 

 We explored different technics to generate a 
drum track. Given a new input, we assigned its closest 
clusters in the feature (guitar) space using k-means, 
DBSCAN or Mixture of Gaussians or we fetched the 
nearest neighbors with K-nn. We then explored 
different ideas to actually output a drum track, based on 
the hypothesis that for a group of similar guitar tracks, 
the drum tracks should be close to each other as well: 

• We picked a drum track within the cluster or 
neighbors and assigned it to the test vector 

• We performed K-means in the target (drum) 
space on the training set, determining the 
major drum cluster within a guitar cluster or 
set of neighbors (correlation) and then picking 
up a random drum in the drum cluster 

• Based on the mean drum values within the 
cluster/set of neighbors, we can also think of 
randomly generating a track, which satisfy 
theses values. However we did not implement 
this method as we think it is hard to generate a 
computerized battery track and more research 
is required to build from scratch a drum track 
which sounds as good as a real track. 

We then merged the two notes matrix in a new Midi 
file. Processing this way, we get a new segment ready 
to be played in a music player. 
  

4 Results 

Because we don’t have any labels, it is hard to 
figure out how good our algorithms and choices of 
features are. To measure the relevance of our different 
clusters/set, we implemented our own metrics: 
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Metric  1: We decided to implement a function giving 
the standard deviation of the values of the features in 
each cluster/set of neighbors. We then compared these 
values to the standard deviations of the entire training 
set to get percentages (100% if equal). It works both for 
guitar features and drums features. 

 

Metric  2: For each elements, we calculated the average 
Euclidian distances in the feature space between our 
segment and every other segments in its the cluster/set. 

 

 

Metric  3: To have a sense of how “good” our drums 
generation are, we computed the Euclidian distance in 
the drum space between the generated drums and the 
original drums. 

 

 

a) Features validation 
 

 To check the relevance of the features and to 
sort them by order of importance, we used our Metric 1 
(standard deviations) for each algorithm in the different 
clusters/set generated. In other words, we tried to figure 
out which features were more homogeneous in the 
clusters/set and thus more characteristics of a cluster. 
To get an insight, we preceded using backward feature 
selection: we removed one feature at a time, computed 
our different algorithms and compared the standards 
deviation of the guitar features in the different 
clusters/set with n features and n-1 features. A 
percentage over 100% means that the feature is relevant 
(removing it resulted in an increased dispersion). 

 

 

 

 

 

 

 

The guitar features are respectively: number of 
notes (1), note duration mean (2), duration standard 
deviation (std) (3), duration max (4), duration min (5), 
number of different intervals (6), mean of the intervals 
(7), intervals std (8), interval max (9), time interval 
between 2 notes (“time”) mean (10), time std  (11), time 
max (12), tempo (13), chords percentage (14), number 
of different pitches (15), percentage of pitches different 
from the fundamental (16). 

In addition to the standard deviations of the 
different segments in each clusters/set in the guitar 
feature space, we also calculated the standard deviations 
of the different segments in the drum feature space. 

In the drum space, the features are respectively: 
number of ticks (1), proportion of hi-hat (2), proportion 
of acoustic snare (3), proportion of acoustic bass drum 
(4), number of hit-hat (5), number of acoustic snare (6), 
number of acoustic bass drum (7), time interval between 
2 ticks (“time”) mean (8), time standard deviation (9), 
time max (10), tempo (11).  
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We also implemented backward feature selection 
with our Metric 3: we generated drums without one of 
the guitar features and computed the distances to the 
original drums. 

 Finally, we computed the mean standard 
deviation of all the features in the clusters/sets over the 
mean standard deviation in the whole training set for the 
3 algorithms to know which features were more 
characteristic of a cluster/set and know which features 
were the best to discriminate between the segments. 

 

 

 

 

 

 

 

 

 

 

 

b) Parameters selection 
 

 In order to determine the right parameters to 
use in our algorithms, that is to say the number of 
clusters for K-means, the number of neighbors for K-
nn, the minimal distance/number of points for 
DBSCAN, we trained our algorithms several times with 
different parameters and then computed, with method 1, 
the mean standard deviation of all the features in all the 
clusters/sets of points.  

 

 

 

 

 

 

For K-means, as the number of clusters is increased, the 
deviation value decreases which is logical as clusters of 
fewer points are more representative of local structures. 
However, the computation time increases. We decided 
that a good trade-off was to select 50 clusters. We did 
the same for the mixture of Gaussian.  

 

 

 

 

 

 

 For K-nn, as the number of neighbors is 
increased the mean standard deviation increases (more 
dispersion) which is logical as we consider higher sets 
of points less representative of local structures. We 
determined that 20 neighbors was a reasonable choice. 
For DBSCAN, we ended up with a distance of 0.2 and a 
number of points minimum to form a cluster of 4. 

Once we had a good choice of parameters, we used 
our Metric 2 to compare the relevance of the different 
algorithms: we calculated the distances between each 
point and their neighbors/other points of clusters, both 
in the guitar space and the drums space. The following 
graphs give these distances, ordered and with an 
indication at a distance of 0.4: 

Guitars – Kmeans 

 

 

 

 

Guitars - DBSCAN 

Drums – Kmeans 

 

 

Drums – DBSCAN 
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c) Drum generation results 
 
We ran through our entire dataset and 

generated multiple times different drums for each 
segment and each algorithm. We then used our Metric 3 
to compare the distances between the generated drums 
and original drums. We found: 

DBSCAN (x):  0.1251                                         
KMEAN (o): 0.1825                                                 
KNN (+): 0.1885 

Here is the detail, feature by feature: 

 

 

 

 

 

 

 

 

5 Conclusion 

 The results presented in the previous section 
have been mostly used to discriminate between the 
different algorithms but do not and cannot really 
provide a deep insight in the actual result, i.e. the 
acoustic output of a generated track. In some cases, the 
drum generated is pretty close to the original drum and 
the result is excellent to hear. But sometimes, the drum 
sounds quite differently and yet, the acoustic output is 
also very good even if it differs from the original song. 
In fact, trying to generate music is inherently subjective 
and it is extremely hard to create accurate metrics. That 
is why we mainly used ours to classify the algorithms 
and restrained ourselves from creating an absolute 
training and test error that we could have done by 
taking the mean of the targets values for a cluster or set 
of neighbors. 

6 Future work  

We currently generate drums for guitar segments of 
16 beats. We already implemented a function to 
generate drums for an entire song by sub-segmenting 
the song, generating drums segment by segment and 

merging the results. However this doesn’t give much 
consistency in the progression of drums. We can think 
of implementing hidden Markov models / Kalman 
filters to have a smooth transition of drums sequences 
(the goal is to estimate what the drums should be based 
on the previous drums segments and merge the result 
with the actual drum generation from our algorithms).  

All of our work has been focused on generating 
drums for guitar segments but we would like to adapt 
our algorithms to other combination of tracks: bass 
from guitar, guitar from drums, etc… 

We currently use midi files for our algorithms. Our 
goal is to be able to generate drums based on a real 
guitar recording. We started to implement an algorithm 
able to convert a .wav into a .mid but the results are 
imperfect for now: our algorithm is able to efficiently 
recover the general pitch of a sound but we are still 
unable to tell if it is a chord or a single note and we 
have trouble in finding the correct starting time and 
ending time of the different notes. Because our features 
depend heavily on the times intervals, our generation of 
drums from  .wav are still imperfect. 

Finally, if we can solve the previous problems, we 
would like to write our algorithms in Objective C and 
Java in order to make a mobile application offer our 
work to the world and make musicians happy. 
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