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I. Introduction

Gender identification by voice is useful in
speech-based recognition systems which em-
ploy gender-dependent models. Vogt and An-
dré [1] suggested that gender differentiation
help improve automatic emotion recognition
from speech. Harb and Chen [2] reported that
classifying speaker’s gender is an important
task in the context of multimedia indexing.
Our paper will examine the applicability of
standard machine learning techniques to the
voice-based gender identification problem.

II. Dataset

We use a subset of TIMIT Acoustic-Phonetic
Continuous Speech Corpus, which is publicly
available online. The corpus consists of 160
sentence recordings by 8 female and 8 male
speakers. We only use 127 recordings because
the rest have serious noise. The recordings are
in wav format and the sampling rate is 16 kHz.

On Page 4, Figure 1 plots the amplitude of
audio waves over time of a sentence recording
of a female speaker. Figure 2, on Page 4, plots
the recording of the same sentence while the
speaker is a male.

The complete TIMIT Acoustic-Phonetic
Continuous Speech Corpus contains record-
ings of 630 speakers, and each speaker reads
10 sentences. Some of the sentences are shared
among speakers, and Figure 1 and Figure 2
plots a sentence that is spoken by them all.

III. Features and Preprocessing

We utilize Yaafe to extract audio features out
of sentence recordings. Our strategy is to first
build models with all the features, 24 in total,

that Yaafe is able to extract. We then evaluate
the performance of different models and run
backward search for feature selection on the
most performant model.

Yaafe takes blockSize and stepSize as input
parameters for all available features. blockSize
defines the frame size, the width of a sliding
window over which Yaafe computes feature
values. stepSize is the step between consecu-
tive frames. The first frame is always centered
on the first signal sample, with blockSize/2 0ś
padded to the left. Whenever the number of
signal samples is not enough for the last frame
to have blockSize samples, 0ś are padded to the
right. For illustration, if blockSize=8 and block-
Size=4, the first frame is centered on the 1st
signal sample and the second frame is centered
on the 5th. Therefore, the first frame has 4
padded zeros together with the first 4 signal
samples. While the second frame covers the
first 8 signal samples.

We use blockSize=1024 and stepSize=512 for
all features. Each feature’s frame coincides per-
fectly, therefore the set of all features at each
frame can be treated as a single data point.
We have 12004 such data points, among which
6286 are labeled ’female’ and 5718 are labeled
’male’. We randomly pick up 8402 data points
(70%) as training data, and the rest serves as
test data for cross validation.

IV. Models and Results

We train naive Bayes (NB), discriminant analy-
sis (DA), support vector machine (SVM) with
linear kernel, nearest neighbor (NN) and clas-
sification tree (CT) classifiers with the training
data , and we test the models against the test
set. Table 1 on page 4 summarizes the results.

Note, when fed with all available features,
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the discriminant analysis (DA) classifier is most
performant in terms of test error rate and pre-
cision. We do not include linear regression nor
generalized linear models here because with
all available features, model terms are rank
deficient.

We run backward search for feature selec-
tion on the discriminant analysis classifier. The
“Test Error Rate” column of Table 2 on Page 4
presents the performance measure when we
start with 24 features and iteratively remove
one feature from the model at a time. The fea-
ture is selected so that the new model with one
fewer features has the minimum test error rate.
We apply similar step-wise greedy algorithms
to get the other two columns.

Observe that the discriminant analysis clas-
sifier with 4 features performs even better than
the model with 24 features.

V. Discussion

Our best performant model still suffers from
a test error rate of greater than 10%. In order
to better understand the nature of our classifi-
cation problem, as well as to direct our future
research in the right direction, we run diagnos-
tics to see if our model has high variance or
high bias. Figure 3 and Figure 4 on Page 4 are
the learning curves of two discriminant analy-
sis models, one with 4 features and the other
one with all available features.

It turns out that even the all-feature discrim-
inant analysis model depicts a typical learning
curve for high bias. The high bias problem
implies that the set of all available features
we are considering does not capture enough
gender-specific characteristics of voice.

VI. Conclusions

Our experiments involve applying standard
machine learning techniques to the voice-based
gender identification problem. Discriminant
analysis works well and we are abel to achieve
88% accuracy, precision and recall. By running
backward search for feature selection and di-
agnostics, we better understand the structure

of the problem. In addition, we also conclude
that general-purpose audio features may not
be able to capture enough gender-specific char-
acteristics of voice.

VII. Future

Zeng, Wu, Falk, and Chan [6] reported that
applying Gaussian Mixture Models combined
with high order audio features as parameters
achieves robust results. It would be interest-
ing to introduce high order audio features to
our models and see its impact on our high
bias problem. In addition, Harb and Chen [7]
also published promising results using neural
networks.
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Figure 1: Voice of a female speaker
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Figure 2: Voice of a male speaker

Test Error Rate Precision Recall

NB 45.59% 75.00% 19.41%
DA 13.83% 86.88% 86.69%
SVM 35.92% 59.38% 99.36%
NN 42.73% 59.39% 58.17%
CT 16.88% 84.80% 82.56%

Table 1: Performance of different models built with all available features

# of Features Test Error Rate Precision Recall

1 17.91% 77.81% 100.00%
2 15.32% 84.41% 91.46%
3 14.10% 86.10% 90.24%
4 12.77% 87.57% 88.92%
8 12.10% 88.28% 88.92%

Table 2: Performance of DA models built with a select subset of features
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Figure 3: Learning curve for a 4-feature DA model
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Figure 4: Learning curve for an all-feature DA model
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