
CS229 Project Report, Fall 2014 (deepak.zambre@gmail.com), Ajey Shah (ajey.shah@gmail.com)
Topic based comments exploration for online articles

Introduction
With news now being consumed on the Internet, not only are consumers exposed to a wide range of
reporting sources but a worldwide peer audience also adds their comments and thoughts about news
pieces. These comments are sometimes very insightful and interesting especially on specialized
communities like Hacker News. However, while the article may be well formatted and sectioned into
different features, the comments are always presented as a long list sorted by last posted time or a
voting system. We want to investigate methods and algorithms to expose a new way of navigating
comments – one where comments are clustered and arranged based on topics from the article.

To present a rationale as to why this is a real problem: Consider the article where iPhone 6 was
released. It had a gamut of information from the new OS features to new hardware features. If I’m a
photography lover, I’m probably am first interested in knowing what the community has to say about
the new camera features. Our solution will attempt to automatically categorize comments based on
such topics extracted from the article. We believe this will bring greater value to the reader and the
news site.

Dataset and nomenclature
For this project we will define the following terms:

“Story” – this refers to the actual original article that is being commented on. For example: The
report on the new iPhone as published on TechCrunch is a “story”.

“Top-level comment” – this is a comment published on hacker news for a particular story such that it
has no other parent comment.

“Concept space representation” – For every story and comment, we run it through a concept/entity
recognition algorithm as service. The output of this process is what we call the concept space of the
data.

The dataset we use is available through https://github.com/HackerNews/API. This is a collection of
all user generated discussion and comments, in plain text, for every story on the popular tech news
site Hacker News. We only consider the top-level comments for our work. The data also has a link to
the actual article on the web that is being discussed. We downloaded 1.2 million unique stories which
together had 5.2 million comments.

For test data, we manually read 375 comments across 5 such stories on HackerNews and clustered
them as human end users of the system. This allowed us to capture our users’ way of mentally
segregating topics in the story as well as comments.

Preprocessing

We crawl the original content of the news article and use basic cleansing API to remove the HTML
cruft in the page. Once we have clean story and comment text data, rather than directly operate on
bag of words of the original text, we attempt to operate on the concept space as generated by
www.alchemyapi.com. Alchemy API approximately works on the principle as defined in [1]. It uses
data from Wikipedia, freebase and other such open source datasets to create an entity graph. This
graph is used to find important keywords that describe particular entities. Alchemy API uses this
knowledge to identity important concepts from free text.

mailto:deepak.zambre@gmail.com
https://github.com/HackerNews/API
http://www.alchemyapi.com/

To reiterate our problem statement, we do not want to invent a new way of finding concepts in a text
document. Rather what we propose are applications of clustering and prediction techniques on
concept space representation.

Unsupervised learning based clustering approach

Random clustering
Randomly assign comments to concept clusters from the story. This was a great baseline score to
compare against our more complicated clustering methods.
Cosine Similarity based clustering
Our next method to clustering was a very quick and dirty approach using the cosine similarity
matching. Our algorithm is as follows:
For each concept in the original story:

For each comment:
Do:

-Find the similarity between the comment concept space and
the concept in the original story
-If similarity is greater than 0, add it to that concept
cluster.

KMeans
Since we are dealing with the problem of clustering comments (unsupervised), kMeans is a candidate
algorithm that we could have tried with. We represented each comment as a vector of concept scores
and used kMeans to cluster the comments in this concept vector space.

Bag of words (BOW) KMeans

We represented a comment as a vector of counts with each count representing the number of times a
particular word appears in the comment. We applied kMeans on this representation of comments.
The results for this approach are shown in graphs below. Note : We also tried stemming and
removing stop words from comments however, in this document we are reporting results when we
didn’t stem and remove stop words (because this approach was giving us better v-measure). The
motivation for using BOW is to be able to compare BOW approach against concept based approach.

Hierarchical Clustering
Conceptually speaking there is a system of taxonomy associated with our project dataset. We can
think of a story with many comments. Each comment has a number of concepts and each concept has
a number of attributes that describe it. Based on this theory we wanted to test the performance of
hierarchical agglomerative clustering.

Supervised learning

Naïve Bayes
While in the previous sections we experimented with unsupervised learning, we also wanted to
experiment with performance of supervised learning. This was particularly interesting in the real
world scenario where we would need to be able to cluster comments as they come in after we use the
initial set of comments to build out a model.

Results

For this problem we define two goals:
1. Keep conceptually similar comments with each other
2. Minimize number of concepts in comments to match concepts in original story.

The first metric helps us understand how well we can cluster w.r.t. human expectation whereas the
second objective ensures that concepts being discussed in the comments that are not related to the
original story are not given too much weightage.

We compare the performance of aforementioned algorithms on 4 stories below with about 50~100
comments in each story. Note that the results reported are for the number of clusters that were
expected by the user as defined in the test set. We believe this is a more realistic comparison than
one purely based on the best v-measure since it tells us performance of algorithm as expected by an
end user rather than for purely academic purposes.

Scores for story 7566069

Training method Number of
clusters

Homogeneity Completeness V-Measure

Random 8 0.060 0.053 0.056
Cosine ranking 8 0.012 0.304 0.024

KMeans 9 0.201 0.322 0.247

BOW KMeans 9 0.125 0.095 0.108
HAC 9 0.052 0.045 0.048

NaiveBayes 9 0.122 0.324 0.1775

Scores for story 8292029

Training method Number of
clusters

Homogeneity Completeness V-Measure

Random 15 0.201 0.655 0.308
Cosine ranking 15 0.100 0.503 0.168

KMeans 15 0.579 0.719 0.641
BOW KMeans 15 0.501 0.667 0.573

HAC 15 0.538 0.668 0.596

NaiveBayes - - - -

Scores for story 8530819

Training method Number of
clusters

Homogeneity Completeness V-Measure

Random 9
Cosine ranking 9 0.0173 0.262 0.032

KMeans 9 0.234 0.262 0.247
BOW KMeans 9 0.250 0.223 0.236

HAC 9 0.207 0.230 0.218
NaiveBayes 9 0.280 0.468 0.350

Scores for story 8609040

Training method Number of
clusters

Homogeneity Completeness V-Measure

Random 6 0.057 0.102 0.073
Cosine ranking - - - --

KMeans 7 0.233 0.346 0.278
BOW KMeans 7 0.328 0.452 0.388

HAC 7 0.233 0.346 0.278
NaiveBayes - - - -

Homogenity1: Score to determine if each cluster contains only members of a single class
Completeness1: Score to determine if all members of a given class are assigned to the same cluster.
V-Measure1: The V-measure is the harmonic mean between homogeneity and completeness.

Discussion

Cosine: The way we’ve implemented cosine ranking, we limit ourselves to actually matching concepts
from the story. This is different than some of our later approaches. Without having keywords that
describes each concept it’s highly unlikely for the alchemy algorithm to detect exact concept matches.
Hence we expect this algorithm to devolve into a simple binary lookup to the concept title. This
explains the terrible performance of this approach. Getting a baseline result was however good for us
to move forward with Kmeans based clustering as well as understanding that restricting clustering to
only use story-comment relations and ignore comment-comment relations is a naïve approach.

kMeans and BOW kMeans:
Both, kMeans on concept space and BOW kMeans performed better than any other unsupervised
algorithm that we have used. Additionally, kMeans on concept space of comments performed better
than BOW kMeans. Intuitively, this observation corroborates clustering process used by humans: a
human groups together comments talking similarly about similar entities. In our case, we are able to
group comments talking of similar entities ignoring the sentiment. BOW kMeans weighs each word
equally from a comment, whereas inherently in a comment, the keywords associated with main
entity of the comment are more important than others.

HAC:
Our motivation here was to look for an unsupervised algorithm to beat kmeans score based on a
taxonomy approach. Note that while HAC beat cosine and random, it was almost always slightly
behind the kmeans based approach. We believe this is due to the fact that the hierarchy of story-

concepts, comments-concepts, and concept-keywords was not well fleshed out in the data set.
Importantly we missed keywords that described particular concepts.

Naïve Bayes:
Our Gaussian Naïve Bayes model was built using the concepts used from alchemy API. We split our
test set into 60% for training and 40% for testing our model’s performance. Note that since we
operate on the concept space, we don’t use multinomial approach since frequency of a concept is
always 1. Naïve Bayes beat other algorithms for story 8503819. Although promising, we believe that
a more descriptive model for what defines concepts will prove beneficial in this case as well.

Conclusion

Our results show that it’s definitely a net win to use kmeans clustering method on the concept space
rather than on the text itself. We can draw this conclusion based on comparisons with the random
method and bag of words based kmeans approach. However, getting a single method to always
perform better is challenging due to nature of the data set and trained algorithms for concept space
(like alchemy api). It was also clear to us that unsupervised methods are not suitable for practical
purposes since they can’t possible become real time. As for supervised Naïve Bayes, it will be hard to
get real-time human judgments on comments to build a model.

Future work:

In the future it would be interesting to train concept space algorithm on specific genres of news and
then use these models to provide a richer concept space for clustering. We would also suggest
experimenting with more supervised means of clustering like decision trees, neural networks,
random forests and online learning methods along with crowdsourced test set generation for initial
comments to help build a model. A stretch goal would be to implement novel online learning
methods as outlines in [6].

References
[1] Rosenberg and Hirschberg (2007)
[2] Story 7566069 - https://news.ycombinator.com/item?id=7566069
[3] Story 8292029 - https://news.ycombinator.com/item?id=8292029
[4] Story 8530819 - https://news.ycombinator.com/item?id=8530819
[5] Story 8609040 - https://news.ycombinator.com/item?id=8609040
[6] Vuvuzelas & Active Learning for Online Classification, Microsoft Research
[7] Python, scikit-learn

https://news.ycombinator.com/item?id=8609040

