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Abstract—Machine learning methods were used to diagnose
the presence and severity of Parkinson’s Disease from gait.
Data was drawn from a public Physionet database consisting
of force sensors positioned under subjects’ feet while walking.
Ambulatory features, including swing time variability, center
of pressure, and foot strike profile, were used to differentiate
normal strides from Parkinsonian strides. An SVM Linear Kernel
performed the best for predicting the presence of PD, with an
AUC of 92.3% and an accuracy of 85.3%. A Random Forest
classifier ranking the severity of Parkinson’s disease on a scale
of 1-5 achieved an AUC of 76.3% and an accuracy of 75.6%.
While past studies have used multiple sensing modalities for this
task, we outline a method for achieving similar accuracy with
only a single set of force sensors.

Index Terms—Parkinson’s Disease, Gait Analysis, Force Sensor

I. INTRODUCTION

There is no standard test to diagnose Parkinson’s Disease,
a condition that affects up to one million people in the US
[1]. Instead, doctors qualitatively assess gait, along with other
clinical observations, to determine the presence and severity of
Parkinson’s Disease; the subjectivity of the assessment opens
up the possibility of inconsistent diagnoses[3]. In this paper
we present a classifier that will diagnose Parkinson’s from
quantitative measurements of gait.

Tahrir et al. [2] showed that SVMs can diagnose Parkinson’s
from a combination of spatiotemporal, kinematic, and kinetic
gait data. In that study, spatiotemporal data was collected using
infrared sensors attached to the subjects’ hips and legs, while
kinetic data was collected using force sensors placed on the
subjects’ feet. Since the former may be cumbersome to collect
in practice, we aim to diagnose Parkinson’s solely from kinetic
gait data.

Fig. 1. Abnormal Gait Characteristics of Parkinson’s Disease

II. DATASET

Data was drawn from a public dataset maintained by Phy-
sionet and originally collected by the Laboratory for Gait

& Neurodynamics, Movement Disorders Unit of the Tel-
Aviv Sourasky Medical Center. The data consists of 279
gait recordings from 93 patients with idiopathic Parkinson’s
Disease (PD) and 73 healthy controls. During data collection,
8 sensors were placed underneath each of the subject’s feet.
For each subject, measurements of the vertical ground reaction
force (VGRF) in Newtons were recorded as they walked at
their usual, self-selected pace for approximately 2 minutes on
level ground. Thus, each datum consists of 16 VGRF time
series, as well as an additional 2 time series representing
the aggregate force under each foot. Finally, each subject is
annotated with demographic information and the presence and
severity of Parkinson’s Disease.

III. FEATURE EXTRACTION

A. Overview
To decide which features to extract from the dataset, we

conducted a literature survey of medical journal articles de-
scribing gait analysis of PD patients. Toledo et al. [3] state
that the ability to maintain a steady gait rhythm is impaired
in patients with Parkinson’s Disease. Amende et al. [4] also
show a significant statistical difference in stride length and
stride-to-stride frequency in subjects with PD.

After conducting the literature survey and deciding on a
feature set, we followed the feature extraction process shown
below. First, we segmented gait into stance and swing phases,
where stance is the part of a step during which the foot
makes contact with the ground, and swing is the part during
which the foot is in the air. Then, we calculated the mean and
variance for each feature described in the following section,
and concatenated them to create the feature vector for each
subject.

Fig. 2. Summary of Feature Extraction and Modeling



B. Features Extracted

1) Naive Features: As a basic feature set, we included the
mean force for each sensor. Though the mean force varies as
a function of the subject’s weight, it can be used as a naive
indicator of the parts of the foot on which the subject tends
to exert pressure.

2) Swing and stance times: As stated by Toledo et al.,
swing time and stance time variability can be a significant
marker for the presence of PD. Swing time is defined as the
time from when the foot lifts off the floor to when it lands
back on the floor. A healthy person is more likely to have a
consistent swing time; conversely, for a patient with PD, the
swing time length varies depending on their degree of motor
impairment. Thus, a low variance in swing time is associated
with a fairly constant stride in a healthy person, whereas
in Parkinson’s patients, higher variance could signify trouble
walking and balancing, or ’freezing of gait,’ a phenomenon in
which Parkinsons patients feel that their feet are glued to the
ground [5].

For each datum, the 16 VGRF time series were processed
to extract swing phase and stance intervals for each step. The
mean and variance of the swing and stance times were used
as classification features. Figure 3 plots the strides of two
subjects, in which swing and stance times for the PD subject
are markedly higher than those of the non-PD subject.

Fig. 3. Stride-to-Stride Time Series of Two Subjects

3) Center of Pressure as a measure of weight imbalance:
Most healthy adults have a characteristic weight distribution
profile and pattern while walking. In a normal gait cycle, one’s
center of pressure will shift from the heel to the toe over the
course of a step, as shown in Figure 5.

To analyze center of pressure, the 16 VGRF time series
were used to produce a 2-coordinate (x and y component) time
series of the center of pressure of the subject’s foot. The mean
and variance of the coordinates were used as features. Note
that these features measure shifts in the weight distribution
both laterally and longitudinally. We calculate the center of
pressure (COP) as follows:

COP =

∑n
j sj ∗ f(sj)∑n

j f(sj)

where n is the number of sensors and f(sj) is the VGRF of
sensor j in Newtons.

Fig. 4. Sensor Positions

4) Foot Strike Profile: Healthy people tend to walk by
lifting their heel and stepping off their toes, then landing
on their heel. Parkinsons patients are more likely to have a
flat foot strike, where the heel and toe touch the ground at
relatively similar time points. Motivated by this, we built a
feature set that captures foot strike profile variability. For each
datum, we use the 16 VGRF time series to produce time series
denoting the point in time were the subject’s feet first touched
the ground after a swing phase. We then calcluated the (x,y)
coordinate of the COP when the foot first contacts the ground,
and took the mean and variance as features.

Fig. 5. Transition of Center of Pressure in one gait cycle

C. Normalization Schemes

1) Pre-Feature Extraction: Since each subject’s vertical
ground reaction force is proportional to the subject’s weight,
we hypothesized that normalizing each of the 16 time series
by the subject’s weight in Newtons would refine our features,
in particular the summary statistics of the sensors. However,
this normalization scheme yielded negligible improvement in
performance.

As a data pre-processing step we also tried normalizing
the time series so as to have zero mean and unit-variance.
However, this also provided negligible improvement as it
eliminated much of the variation in force between the different
sensors.

2) Post-Feature Extraction: Initially, our logistic regression
classifier far outperformed our SVM classifier. After using
min-max normalization on the feature vectors we were able to
improve the performance of the SVM classifier to be on par
with the Logistic Regression classifier. For a more detailed
explanation see the Results and Discussion section.



IV. MODEL SELECTION AND REFINEMENT

A. Classifiers

We selected a basket of classification algorithms to test:
logistic regression, random forest, linear kernel SVM with
regularization, and RBF kernel SVM. As a baseline algorithm
for both classification tasks, we ran Logistic Regression with
the naive feature set described above.

B. Feature Selection

To mitigate over-fitting, a subset of the feature set was
extracted using forward search, where the subset size k was
tuned as as a hyperparameter. The best subset was chosen for
the final classifier. The criteria for marginal improvement in
the algorithm was the average AUC of an ROC curve in 10-
fold cross validation.

C. Parameter Search

After pruning our feature vector, for each classifier, we
implement a parameter grid search to find the best performing
parameters across a set of possible values. For example, for
the linear SVM classifier we run a grid search on the possible
values of the regularization parameter.

Fig. 6. Forward feature selection and parameter grid search.

V. EVALUATION METRIC

One of the challenges we faced in building the classifiers
was class imbalance and small sample size. As noted in
the section detailing the data set, our input classes had a
70% to 30% asymmetry (PD subjects to non-PD subjects).
As a result, traditional accuracy measures would not have
been an effective evaluation metric. Instead, we used the
AUC (Area Under the Curve) of the ROC (Receiver Operator
Characteristic Curve) as our evaluation metric. The ROC curve
plots the true-positive rate against the false-positive rate for
a binary classifier system. Chen et al. [7] have shown that
the AUC to be a good evaluation metric in combating class
imbalance for small samples. As an added precaution, we
sampled training examples with weight inversely proportional
to the class frequency, thus downsampling the PD subjects.

VI. RESULTS AND DISCUSSION

As shown in Figure 7, the baseline algorithm performed
relatively poorly, predicting the presence of PD with 56.7%
AUC and the severity with 51.5% AUC. This was expected
as the force sensor means contain little information about the
abnormal gait features characteristic to Parkinson’s such as
swing and stance time variability.

Fig. 7. 10-fold cross validation metrics for baseline classifiers.

To improve classification performance, we extracted the
ambulatory features described in Section III, and tested each
classification model described in Section V with forward
feature selection and parameter grid search. Figure 8 below
shows a summary of the performance of the models.

Fig. 8. Average AUC score over 10-fold cross validation for PD diagnosis
classifiers. The blue bars show the performance before parameter grid search
(GS) for best parameter estimation. The orange bars show the performance
after GS.

All models achieved an AUC score higher than 90%, with
the linear kernel SVM outperforming the others by a small
margin. Examining the cross-validation metrics for the best-
performing classifiers in more detail, we see in Figure 9 that
the PD classifier and severity classifier perform much better
than the baseline. In particular, the PD classifier AUC of
92.3% represents a large improvement over the 56.7% AUC of
the baseline algorithm, while the PD severity improved from
51.5% AUC to 76.3%.

Fig. 9. Summary of best performance classifiers



As mentioned in section IV, we used a forward search
algorithm with the average AUC of an ROC curve in 10-
fold cross validation to determine the most crucial features
in our model. Table I below shows the top features found by
forward selection. Confirming the findings of Toledo et al. and
Amende et al., we find that variability in center of pressure and
foot strike profile are good predictors of PD [3][4]. The first
finding is consistent with the fact that PD patients shift their
weight erratically, thus increasing the variance in the center of
pressure during the stance phase of gait. The second finding
most likely results from PD patients having a flat foot strike
rather than a heel strike, which would bring the mean foot
strike coordinate closer to the center of the foot.

TABLE I
MOST SIGNIFICANT FEATURES IN CLASSIFIER PERFORMANCE

PD Classifier center of pressure vari-
ance, foot strike coordi-
nate means

Severity Classifier sensor means, center of
pressure variance, foot
strike coordinate means

Fig. 10. Random Forest Decision boundary using features: Mean xth
coordinate foot strike and variance of y coordinate of center of pressure

Indeed, plotting the subjects by foot strike mean and center
of pressure variance, as in Figure 10, clearly separates the data
into PD and non-PD clusters by center of pressure variance,
and to a lesser degree by the foot strike mean. The plot also
helps to explain the relatively high AUC score of the Random
Forest classifier, as it is able to modify the decision boundary
to handle the noise in the dataset.

Interestingly, both SVM classifiers performed poorly (∼
60% AUC) before min-max normalization. The literature about
SVMs suggests that large margin classifiers are sensitive to
the way features are scaled, resulting in severe accuracy
degradation if the data is not normalized. In the case of the
linear kernel SVM, a prediction is calculated as follows:

Σm
i=1αiy

(i)〈x(i), x〉+ b

If a particular dimension of x is much larger in magnitude
than the rest, it will dominate the dot product and thus
affect the separating hyperplane. Normalizing adjusts for this
magnitude discrepancy, explaining the performance boost that
we observed upon normalization.

Fig. 11. Linear SVM Decision Boundary for swing time and variance of yth
coordinate of the centre of pressure (min-max normalized). Data normalized
using min-max normalization. Regularization C= 5.2

VII. CONCLUSION AND FUTURE WORK

This paper presents several successful classifiers for the
diagnosis of the presence and severity of Parkinson’s Disease
from gait data. We provide an improvement on previous work
by Tahrir et al. [2] by presenting a classifier that only requires
kinematic gait data (as opposed to kinematic and spatiotempo-
ral). We also successfully extract gait abnormalities previously
shown to be associated with Parkinson’s Disease and use them
for classification [3][4].

For future work, we would like to improve the gait seg-
mentation algorithm to be more resistant against noise and to
segment the stride into further subphases of the gait cycle. We
would also like to extract a richer feature set that incorporates
these subphase features to improve the accuracy of the severity
classifier.
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