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Introduction 
A.  Background 
Proper regulation of mRNA levels is essential to 
nearly all cellular processes. Transcription factors 
are responsible for regulating levels of mRNA. By 
binding to a specific DNA sequence via a DNA-
binding domain, transcription factors can promote or 
block the recruitment of RNA polymerase, an 
enzyme responsible for transcription, effectively 
controlling when and how much of a gene is 
expressed [1].  Predicting the binding sites of 
transcription factors is an important area of research, 
as identifying these regulatory sites can shed light 
on the mechanisms that regulate specific genes. A 
variety of algorithms have been developed in order 
to predict transcription factor binding sites (TFBSs) 
a priori [2]. These techniques have the potential to 
identify novel transcription factor binding motifs. 
However, in some cases, the transcription factor 
responsible for binding a given motif is unknown. 
Here, we address this issue using gene set 
composition to predict which transcription factors 
bind common binding motifs.  This approach differs 
from other work in the field, as previous efforts 
have mainly focused on predicting targets of known 
transcription factors. 
 
B.  Data 
 I. Gene Sets 

A common way of determining which 
transcription factor regulates a given gene is to look 
for characteristic DNA binding motifs within the 
promoter of the gene [3]. In general, each 
transcription factor has a motif around 10 base pairs 
in length to which it preferentially binds [1].  
Therefore, it is possible to sequence genes and 
group them based on which transcription factor 
site(s) their promoters contain.  One of our datasets 
is a list of transcription factor-gene sets compiled 
from the ChIP Enrichment Analysis system 
(CHEA), the Broad Institute MsigDB database, and 
the Encyclopedia of DNA Elements (ENCODE) 

Project [4].  It includes 757 transcription factors, 
along with the set of genes that each is expected to 
bind to and regulate, and some transcription factors 
appear with multiple gene sets. 
 
II. Expression Data 

RNA-seq is a recent technique used to 
quantify gene expression by directly sequencing 
RNA molecules from a cell sample. The sequenced 
RNA is converted to a library of cDNA fragments 
and mapped to specific genes in the genome, and the 
number of reads for a gene can be used to quantify 
gene expression [5]. Fragments per kilobase of exon 
per million reads mapped (FPKM) measurements 
are often used to quantify gene expression because 
they allow for normalization of reads by gene 
length.  FPKM is defined as the following: 
 

!"#$! = !
!!
!!!

∗ 10! 
  
where !!= number of reads that align to a gene,    
!! != effective length of a gene, and N = number of 
reads sequenced [5]. 
Our dataset contains RNA-seq FPKM measurements 
from 95 human individuals across 27 different tissue 
types [6]. Each tissue sample contains F 
PKM measurements for 20,050 genes. The data was 
retrieved from ArrayExpress under accession 
number E-MTAB-1733 [7]. 
 
Methods 
I. Data Preprocessing 
A. Expression Data 

In the original table, genes were labeled 
using the Ensembl gene ID convention. These 
identifiers are not directly compatible with other 
bioinformatics resources, so Biomart was used to 
generate a mapping of Ensembl IDs to official 
HGNC gene symbols [8].   When a gene symbol 
appeared more than once in the table, gene 
expression was summed across the rows to produce 
a single entry. Finally, FPKM values were log2-

Prediction of Transcription Factors that Regulate Common Binding Motifs 
Dana Wyman and Emily Alsentzer 

CS 229, Fall 2014 



 

 2 

transformed, which is a standard RNA-seq 
processing step.   
 
B. Gene Set Filtering 
 

All gene sets for species other than Homo 
sapiens were removed.  After filtering, the data 
contained 757 gene sets.  
 
II. Assessing the Relationship Between 

Transcription Factor and Gene Set Expression 
In order to determine whether gene 

expression data could be used to predict 
transcription factors that regulate common binding 
motifs, we first tested the assumption that 
transcription factors and their gene targets have 
correlated expression profiles. For each gene set, we 
computed the sum of the Euclidean distance of the 
TF from each gene in the gene set as shown: 

! ! !"!#!$ ! ! !" ! !"#"
!"#"

 

 
Then, we repeated the above calculation using a 
random gene set selected from a list of the genes 
across all gene sets, and calculated the fraction of 
times that value obtained with a random gene set 
was less than the original Dgeneset out of N 
repetitions. Here N = 100. 
 

! !""#$#%&' ! !
! ! !! !"#"$"%

!
! ! ! !"#"$"% !

!
 

 
II.  Classification of Transcription Factors Using the 
TFClass Hierarchy 

To make the number of response classes in 
the data more tractable for machine learning, the 
transcription factors were organized separately into 
superclasses and classes using the TFClass 
hierarchy (Table 1). This framework orders 
transcription factors based on their mode of 
interaction with DNA [9]. The TFClass Hierarchy 
(Sept. 2014 version) was downloaded in the .obo 
ontology format [9].  The superclass and class of 
each transcription factor from the gene set data was 

 

Category 
Number Description Training 

Examples 

1 Basic Domains 81 

2 Zinc-coordinating 
DNA-binding domain 

113 

3 Helix-turn-helix 
domain 

105 

6 Immunoglobulin folds 33 

1.1 Basic leucine zipper 
factors (bZIP) 

44 

1.2 Basic helix-loop-helix 
factors (bHLH) 

37 

2.1 Nuclear receptors with 
C4 zinc fingers 

42 

2.3 C2H2 zinc finger 
factors 

71 

3.1 Homeo domain 
factors 

41 

3.3 Fork head / winged 
helix factors 

31 

3.5 Tryptophan cluster 
factors 

17 

6.2 STAT domain factors 19 

Level Name Definition 

1 Superclass General topology of the DBD* 

2 Class Structural blueprint of the DBD 

3 
Family Sequence and functional 

similarities 

4 Subfamily Sequence-based subgroups 

5 Genus TF gene 

6 
Factor 
‘species’ 

TF polypeptide 

 Table 1. TFClass Hierarchy Definitions. *DBD = DNA 
binding domain [9].  

Table 2. Superclasses and classes used 
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obtained by matching its name against the records in 
this ontology.  When a factor failed to match, its 
synonyms were used to search the hierarchy as well.  
At both the class and superclass level, categories 
with fewer than 15 training examples were omitted. 
After this filtering, four superclasses (1, 2, 3, and 6) 
remained, as well as eight classes (1.1, 1.2, 2.1, 2.3, 
3.1, 3.3, 3.5, and 6.2) (Table 2). 
 
III.   Multinomial Elastic Net Regression 
A. Features 

Each of the 12,089 features is a gene that 
appears at least once in any transcription factor gene 
set.  The presence of a given gene in the gene set of 
a transcription factor is represented by a 1 at that 
index, and its absence is represented by 0. 
 
B. GLMnet Model 
 We decided that multinomial logistic 
regression was the most appropriate machine 
learning method for this problem because the data 
contains more than two classes and has binary rather 
than continuous numerical features.  Because there 
are many fewer gene set examples than individual 
genes, the dataset is prone to overfitting. To best 
address this, we chose multinomial elastic net 
regression as implemented in the GLMnet R 
package because it allows for variable selection via 
regularization with combined L1 and L2 norm 
penalization [10].  After the model was trained on 
all of the data, 10-fold cross validation was 
performed to obtain the test error.Equations for the 
multinomial model are shown here as described in 
the GLMnet Documentation [10]: 
 
Suppose the response variable has K levels G = 
{1,2,…,K}. Here we model:  
 

! ! ! = ! ! = ! = ! !!!!!!!!!
!!!!!!!!!!

!!!
!!. 

 
Let Y be the N x K indicator response matrix, with 
elements !!! = !(!! = !!.!! Then the elastic-net 
penalized negative log-likelihood function becomes 
! !!! ,!! !

! = !− 1
! !!" !!! + !!!!! − !"# !!!!!!!!!!

!

!!!

!

! ! !

!

! ! !

 

! !!
! ! ! ! !

!

!
! !! ! ! !

!

! ! !

! 

 
where !  is a ! !! !! matrix of coefficients. ! !  refers 
to the kth column (for outcome   category k), and ! !  
the jth row (vector of K coefficients for variable j). 
 
Results 
 It has been proposed previously that 
transcription factors exhibit similar expression to 
that of the targets they regulate [3]. After an 
unsuccessful attempt to use elastic net regression to 
predict transcription factors using gene expression, 
we decided to test the validity of this statement in 
our data. To do this, we calculated the Euclidean 
distance of the transcription factor to every gene in 
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Figure 1: Distribution of Bootstrap P-values Measuring 
Similarity of Transcription Factor and Gene Set 
Expression. Out of 631 gene sets tested, 291 had a significant 
p-value (threshold of 0.05).  This indicates that some 
transcription factors show similar expression to that of their 
gene sets across tissues, but it is not a valid assumption for the 
entire data set. 

Superclass Training Error Test Error 

1 11% 48% 

2 0.88% 28% 

3 12% 43% 

6 15% 45% 

 
Table 3. GLMNet Error for Superclasses 
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the gene set. Then, we computed a bootstrap p-value 
for each gene set to determine whether the distance 
was greater than that of a randomly selected set.  We 
found that only 46% of the gene sets had significant 
bootstrap p-values (Figure 1), which suggested that 
predicting transcription factors using gene 
expression could have limitations for our dataset.  
  In light of these findings, we took an 
alternative approach to predicting transcription 
factors by using gene set composition as features for 
a multinomial elastic net regression model. We 
performed two regression analyses using the 
transcription factor superclass and the transcription 
factor class as the response variables (Figure 2). 
Cross validation was used to determine the optimal 
lambda value for each regression. The regression 
predicting  

  transcription factor superclass was 60% accurate 
with an overall training error of 8% and an overall 
test error of 40% whereas the regression predicting 
transcription factor class was 49% accurate with an 
overall training error of 9% and an overall test error 
of 51% (Table 3 and 4). 
 
Discussion and Conclusions 

Identification of transcription factors that 
bind genes with common binding motifs can provide 
insight into the regulatory mechanisms of these 
genes. Our results show that gene set composition is 
a better predictor of transcription factor classes 
compared to expression data. Furthermore, our 
model is better able to predict transcription factor 
superclass than class, which is unsurprising because 
there are fewer training examples per class 
compared to superclass.  

Although gene set composition shows some 
promise for transcription factor prediction, there is 
still a need for improvement of our model. The 32% 
and 42% differences between test and training errors 
for superclass and classes respectively suggests that 
our model is overfitting the data despite the use of 
L1 and L2 norm penalized logistic regression. Other 
alternatives for feature selection may better 
eliminate overfitting. In the future, we could use L1 
norm penalization (lasso regression) or L2 norm 
penalization (ridge regression) instead of elastic net, 
which has both L1 and L2 norm penalization. 
Feature selection via forward search, backwards 
search, or filter feature selection with mutual 

Class Training Error Test Error 

1.1 6.8% 39% 

1.2 11% 78% 

2.1 7.1% 67% 

2.3 2.8% 35% 

3.1 12% 39% 

3.3 19% 45% 

3.5 24% 76% 

A Predicted Superclasses 
 
Actual 

42 33 6 0 
7 81 23 2 
8 36 59 2 
1 7 7 18 

B Predicted Classes 

Actual 

 1.1 1.2 2.1 2.3 3.1 3.3 3.5 6.2 

1.1 27 4 4 8 0 1 0 0 

1.2 5 8 5 17 1 0 1 0 

2.1 1 2 14 22 2 0 0 1 

2.3 2 7 5 46 5 4 1 1 

3.1 0 1 0 11 25 3 0 1 

3.3 1 0 3 8 2 17 0 0 

3.5 0 3 0 9 0 1 4 0 

6.2 0 0 2 8 1 1 0 7 

Figure 2:  Superclass and Class Confusion 
Matrices. 
A)Confusion matrix for superclasses illustrating how 
training examples were classified during the testing 
run of multinomial GLMnet.  Entries on the diagonal 
were classified correctly. 
B) Confusion matrix for classes illustrating how 
training examples were classified during the testing 
run of multinomial GLMnet. 

Table 4. GLMNet Error for Classes 
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information scoring may also yield better test errors.  
 In addition to correcting for overfitting in the 
model, there is also a need for further granularity of 
response variables. Although it is interesting to 
predict transcription factor class for a set of genes 
with a common binding motif, in order for these 
results to be biologically useful, prediction at the 
family, subfamily, or even genus level is needed. 
Additional data describing the transcription factors 
that regulate genes with common binding motifs is 
necessary in order to predict transcription factors at 
a finer granularity, and it is also needed to ensure 
that there are training examples of transcription 
factors in each superclass and class so that all x 
superclasses and all x classes can be predicted. With 
additional data and improved measures to reduce 
overfitting, our approach could be a useful tool for 
identifying unknown transcription factors with a set 
of known gene targets. 
 
Future 
Previous research has indicated that transcription 
factors may regulate genes that have similar 
functional roles [3]. Therefore, another approach to 
predicting transcription factors using gene sets 
would be to use gene ontology (GO) terms as 
features in a multinomial logistic regression model. 
GO terms classify genes by cellular component, 
molecular function, and biological process, and are 
organized in a hierarchy with increasing specificity 
[11].  This hierarchical structure is useful in this 
context because it would allow for different levels 
of detail to be tested in the features. In the future, an 
approach along these lines could further improve 
our ability to predict which transcription factor 
binds to a given gene set. 
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