
Contours and Kernels: The Art of Sketching

Dan Guo, Paula Kusumaputri, Amani Peddada {DGUO1113,PAULAKSP,AMANIVP}@STANFORD.EDU

Abstract
Given sketches of everyday objects, we seek to
accomplish two goals. The first is to classify the
object depicted within the sketch. The second
is to study different styles and varied interpreta-
tions in the depictions of the same object cate-
gory. We employ supervised learning algorithms
as the main method of classifying sketches into
their respective classes, with our fine-tuned mul-
ticlass SVM attaining 57.7% accuracy. To un-
derstand varied styles and portrayals of objects –
concepts that inherently are subjective and con-
tain more vague metrics – we use unsupervised
learning algorithms to discover common struc-
ture in the data. We find that by clustering, we
group sketches with stylistically or structurally
similar features. These groupings yield impor-
tant insight into how we can obtain computa-
tional interpretation of more general, subjective
qualities.

1. Introduction
Sketching has existed as one of the original ways humans
have used to depict their narratives and journeys. Despite
being such an ancient media of expression, this art form
has been tremendously unexplored through computational
methods, with only introductory work having been com-
pleted (Eitz et al., 2012). In our study, we aim to explore
the domain of sketches in two ways.

First, we interpret sketches as carriers of information, de-
picting real life objects. In this part of the study, we want to
see exactly how well sketches can be equated with their real
life counterparts. Namely, we attempt to classify a sketch
according to the object that is drawn.

Secondly, we consider sketches as an art form, where the
individuality and creativity of the artist are emphasized.
Given drawings of objects within a certain category, we
note that there is a large degree of variability depending
on the author of a sketch. We thus seek to understand what

Stanford University

types of styles might be used in the creation of these draw-
ings and what are different ways that artists might represent
the same everyday object.

2. Dataset
Dataset. We base our analysis on an already exist-
ing crowd-sourced dataset, collected and released with
the paper (Eitz et al., 2012). The dataset consists of
20,000 human-produced drawings, depicting 250 object
categories. Each sketch is labeled with the correct ob-
ject category, representing our ground truth values. The
sketches are limited to only isolated objects, with no back-
grounds, surrounding contexts, or colors, and are provided
in png and svg (temporal order of strokes) format.

Features. Given the common use of bag-of-features fea-
ture extraction (Sivic et al., 2005) in image- and photo-
based classification, we apply the same techniques to
sketch-based classification. The features of sketches are
derived using the Histogram of Gradients (HOG) technique
(Dalal & Triggs, 2005). This featurizing algorithm divides
the png images into a grid of cells; within each cell, the
technique first builds a visual vocabulary of common line
orientations. The method then counts frequencies of gra-
dient orientation and builds a histogram from which 500
features can be extracted. The HOG descriptors are invari-
ant to local scale geometric transformations, as the features
are derived from a particular cell (Dalal & Triggs, 2005).
We then use this feature representation, in the form of 500-
dimensional real valued vectors, to represent each sketch.

3. Methods
We utilize various supervised learning algorithms for ob-
ject classification in sketches. We test the algorithms (all
except one-vs-one SVM) with 10 fold cross validation, re-
ducing data loss. We also use unsupervised learning al-
gorithms to understand the different styles and representa-
tions in a sketch. Because there does not necessarily exist a
metric to test against, our style analysis is fairly qualitative
and examines individual images to understand structure be-
tween sketches.

Contours and Kernels: The Art of Sketching

3.1. Supervised Learning

Note that KNN and GDA were algorithms used mostly for
rapid prototyping. We implemented these to test the 10
fold cross validation wrapper algorithm and error analysis
infrastructure.

3.1.1. K NEAREST NEIGHBORS

To serve as a guiding diagnostic, we implement a variant
of the K Nearest Neighbor Classifier. The naive KNN clas-
sifier examines the training instance closest in Euclidean
distance to a given test example by features, and then out-
puts that training example's category as the test example's
prediction; this corresponds to the case when K = 1 (Guo
et al., 2003).

We made several enhancements to this naive classifier. First
it seemed less accurate for the label of the test example to
be determined by only one training example. Therefore,
we learned the optimal value of K by varying the values of
K, finding that the best performance is achieved with K = 8
(see Figure 1).

Figure 1. Plot of how classification accuracy varies with the value
of K (number of neighbors). The accuracies are the average of
10 fold cross validation runs, with the modified voting scheme
discussed.

We simultaneously modified how the K neighbors voted
on the classification of the testing instance. A naive ap-
proach would be to tally up the classifications of the K
neighbors and assign the test example the majority's clas-
sification (Guo et al., 2003). We instead enhanced the vote
so closer neighbors have more weight in the classification
of the test example. We categorize a test example X withN
= {K nearest neighbors of X by Euclidean distance dist()}
as the class i that maximizes

∑
n∈N

I{class(n)=i}
dist(X,n) .

3.1.2. GAUSSIAN DISCRIMINANT ANALYSIS

The inspiration behind GDA is that our task is, fundamen-
tally, predicting data on the similarity of input features,
so it follows intuition to construct general models for our
classes. Thus we describe the distribution of features for
each of the 250 possible object categories. From this point,

classifying a test example is equivalent to finding the class
where the probability of observing the test example's fea-
tures is maximized.

3.1.3. MULTICLASS SVM

With the high success of SVM's in classification-related
problems, we implement two variants of the multiclass
SVM as described in (Hsu & Lin, 2002).

One-vs-All SVM For each object category in our dataset,
we train an L1 regularized, soft-margin SVM that classi-
fies whether a given sketch belongs in that category or not.
Thus, we learn a total of 250 SVM's. For a test example
x, we loop through every classes's SVM, classifying x as i
where i is

argmax
i=1,...,250

∑
j

αi
jK(sij , x) + b

Of the different kernels experimented, the quadratic kernel
K(x, y) = (xT y + c)2 performed optimally.

One-vs-One SVM For all pairs of categories X,Y , we
generate an SVM (SVMX,Y) that classifies whether a
sketch is of X or Y . We classify test example Z as the
class

C = argmax
C

∑
X,Y :X<Y

I{SVMX,Y classifies Z as C}

Because this requires an SVM for all unique pairs of ob-
jects, the one-vs-one SVM algorithm requires

(
250
2

)
SVM

classifiers.

3.1.4. NEURAL NETWORK

The superlative performance of neural networks within
other computer vision tasks suggested they would be ap-
propriate for this study. In specific, we build a single-layer
Neural Network with 400 nodes, another with 600 nodes,
a deep Neural Network with two layers of varying sizes,
and 250 binary neural network classifiers for each cate-
gory. We find that the network with two layers performed
best, with 400 and 300 nodes, respectively, which follows
a heuristic that the number of hidden nodes should be ap-
proximately the mean of the input and output layer sizes.
Each Neural Network is a supervised feed-forward, back-
propagation network, where the output layer is a softmax
classifier, and the hidden layer contains a standard non-
linear function (the tanh function) applied at each level
to our input features. During training, examples are fed
through the network, and the results are used to calculate
gradients that we then apply iteratively in Stochastic Gradi-
ent Descent to derive our matrices, biases, and other param-
eters, as is common with back-propagation (Rojas, 1996) .

Contours and Kernels: The Art of Sketching

Testing involves feeding new examples through the layers
to obtain a vector of probabilities, which is then translated
into the predicted category.

3.1.5. HIERARCHICAL CLASSIFICATION WITH SVM

With the success of one-vs-all SVM, we decided to de-
velop a more intuitive way of choosing which subsets of
categories to train our SVMs on, to obtain more fine-tuned
class recognition. We therefore chose to construct a hierar-
chical tree of categories (see Figure 2) from our data. We
do so in the following manner: Begin with a set of 250
nodes (where each represents one object category). Iter-
atively create subtrees by setting the next two nodes (or
other subtrees) that are most commonly misclassified for
each other as children of a new internal node. This eventu-
ally generates a tree whose structure describes the level of
misidentification between various sets of object categories,
with entries sharing the same parent node being frequently
misidentified. For every internal node in the tree, we then
train a binary SVM to predict whether a test example be-
longs to the left or right child. Classifying a given example
involves passing it through the tree, and outputting the first
leaf node the sample reaches.

Figure 2. SVM Hierarchical Tree. The root of the tree is in the
top left. Note that nodes that share a direct parent are more likely
to be misclassified. We have two closeups showing the misclassi-
fications in groups of vehicles and objects that look very similar.

3.2. Unsupervised Learning

3.2.1. K-MEANS CLUSTERING

To understand what styles or representations of objects are
commonly found, we strive to understand structure within
an object category. For each object category, we run k-
means clustering on its constituent points. However since
a given object category may differ in the number of unique
clusters, for each object category (e.g. mug, seagull, etc.)
we learn the optimal number based on the data's silhouette
values (Rousseeuw, 1987) of point i, s(i) = b(i)−a(i)

max{a(i),b(i)}
where a(i) is the average similarity of i with all other data
within the same cluster and b(i) is the lowest average dis-

similarity of i to any other cluster which i is not a member.
We run k-means clustering using different numbers of start-
ing centroids, each for multiple runs, and pick the number
of cluster centers that routinely achieves the largest silhou-
ette value over all data points.

4. Results
4.1. Supervised Learning Results

We test the data with various supervised learning algo-
rithms, with the results below in table 1.

For sketch classification, we find that one-vs-all SVM pro-
duces the best results, with an accuracy of 57.7% that im-
proves over the 56% performance provided by the paper
(Eitz et al., 2012).

4.2. Unsupervised Learning Results

When we apply k-means to the object categories, we find
optimal cluster numbers range from 1 to 10; we stop at this
point, since further grouping begins to assign individual
points to unique clusters, which does not yield additional
information.

5. Discussion
KNN. KNN is a simple classifier examining the categories
of the closest neighbors in order to make a classification. In
a feature space where many different object categories ex-
ist in close proximity to one another, predicting simply by
the nearness of neighbors is susceptible to noise. The error
from KNN appears to be a variance problem that can likely
be reduced with more data. A larger dataset from a rep-
resentative distribution of artists can improve performance
levels. We can understand this by recognizing that as the
number of training sketches grows, a given test example
will look more similar to a now larger set of training ex-
amples drawn from that same category. At the moment, we
find that a test example is close in distance to a few sketches
of the same class, but is also near drawings of other objects,
which is the source of many misclassifications.

GDA. Observing the results in Table 1, it appears that GDA
is susceptible to overfitting, as its training error is fairly
low while its test error remains high, suggesting a variance
problem with GDA. Specifically, GDA makes the assump-
tion that the distribution of features given a class label is
multivariate Gaussian. In many object categories, however,
this assumption does not hold, since there are several com-
mon representations of the same object. Thus the variation
of sketches may not follow a canonical Gaussian curve. In
fact running a normality test confirms that most features
with statistical significance are indeed not Gaussian given
the class labeling.

Contours and Kernels: The Art of Sketching

Table 1. Training and Test Accuracy. All models (excluding one-vs-one SVM) were evaluated with 10-fold cross validation.

MODEL TRAINING ACCURACY TEST ACCURACY DATA SET SIZE

GDA 99.76% 48.89% 18000 TRAINING, 2000 TESTING
KNN 100% 44.14% 18000 TRAINING, 2000 TESTING
ONE-VS-ALL SVM 100% 57.7% 18000 TRAINING, 2000 TESTING
ONE-VS-ONE SVM 100% 46.15% 18000 TRAINING, 2000 TESTING
NEURAL NETWORK 61.17% 43.45% 18000 TRAINING, 2000 TESTING
HIERARCHICAL CLASSIFICATION 100% 43.7% 18000 TRAINING, 2000 TESTING

SVM. The one-vs-one SVM is a cleaner algorithm to train
as we build classifiers between only two distinct object
categories, instead of the one-vs-all variant. The draw-
backs, however, seem to outweigh this potential benefit.
For instance, one-vs-one requires an SVM for every pair
of distinct object categories, which is

(
250
2

)
SVM's to train.

This makes testing and handling the one-vs-one system ex-
tremely inefficient, such that 10 fold cross validation is in-
feasible. Additionally, it would not scale well to larger
numbers of categories. Another drawback is our one-vs-
one does not keep track of the score outputted by each
SVM. Instead, the current implementation simply classi-
fies an object by the class that the greatest number of pair-
wise SVM's decides on. This does not allow for more nu-
anced decisions, where the relative confidence from differ-
ent SVM's is taken into account.

The one-vs-all SVM excels in the task of classification, out-
performing the other algorithms by a considerable margin.
This is perhaps because SVM's generally excel at binary
classification tasks more so than other methods and are gen-
erally more robust, placing fewer restrictions on the struc-
ture of the data, as with GDA, for instance. Despite reg-
ularization, interestingly, the set of SVM's attains ∼100%
accuracy on the training set. This implies that the data are
linearly separable and do not have very large outliers, at
least in the quadratic kernel space. It is also interesting to
note that there are certain test examples where every one
of the 250 SVM's achieves a negative score. This suggests
that for each object X , the binary SVM classifies the test
example as not of the object X . In many cases, this is
an expected outcome, since the negative examples for each
SVM encompass a larger range of features spanned by 249
categories, as opposed to those of the positive examples,
which span only a single category. This could perhaps be
addressed by picking random subsets of our negative ex-
amples for classifier training.

Looking at close ups in Figure 2 of our hierarchy tree,
the common misclassifications of objects by the one-vs-
all SVM demonstrate that object category labels play large
roles in the accuracy, as there is significant overlap between
some classes (either very similar to each other- barn and
house- or one a subset of the other- chair and armchair).

Figure 3. Confusion Matrix of Multiclass SVM (10-fold Cross
Validation). Warmer values, or larger values correspond to more
correct classifications. The left axis is truth classes and bottom
axis is predicted classes.

This may suggest that we can actually build a set of cate-
gories that will allow us to classify more accurately, with-
out losing additional information.

Hierarchical Classification. The idea behind implement-
ing hierarchical classification is that with a clear hierarchy
in object categories, SVM's can be used to decide between
large groups of objects, and more specific SVM's can then
progressively produce finer classifications. The central is-
sue with this method is that the hierarchical tree of object
categories that we generated is less balanced than what we
had anticipated. Specifically, for the majority of the tree,
an internal node has two children, one which is a leaf node
and one which is the rest of the tree. Because of this struc-
ture, when we build an SVM classifier for each internal
node, the classifier will often decide between a single ob-
ject category (leaf node) and the rest of the objects (rest
of tree). And if the SVM were to achieve a positive score
on that object category, the algorithm simply classifies the
test example as such. Since we do not consider the rest of
the tree during our testing, there are many chances for a
test example to incidentally be misclassified as the single
object category. The hierarchical system thus did not lend
itself well to classification because its structure is prone to
premature classification decisions.

Neural Network. It is also interesting that the Neural

Contours and Kernels: The Art of Sketching

Network's performance was not as superlative as expected,
given NN's common use in computer vision classification
tasks. This might be simply due to the parameterization
of the network – more finely tuned functions and weights
may be needed – but most likely it is because of the large
variability in the training and testing data, such that the net-
work tries to capture too large a range of relationships be-
tween components within the sketches, thus producing less
definitive results. Therefore, a standard network may not
actually be suited to this task, and different variants of the
network might need to be considered (Convolutional Neu-
ral Networks, for example).

K-Means Clustering. To understand styles and different
interpretations in sketches, we cluster within particular ob-
ject categories, using pairwise distance as a metric. These
clusters capture quite well the variability with which the
object is drawn. Quite often, the clusters within an object
category mirror the diversity of drawing style and repre-
sentations of the same object. To give a few examples, in
Figure 4, we have samples from the two bear clusters. Clus-
ter one represents more realistic bears with four paws. In
cluster two, the bears are standing on its hind legs. These
are fundamentally two different positions that a bear can
assume and the clustering algorithm clearly separates these
two cases. As a second example, the two clusters of vans
are based on the level of detail in the sketch. The vans in
cluster one are all very busy, with many lines sketched onto
the side of the vehicle; the vans in the second cluster have
an empty body and are more simplistic in flavor. The style
of the sketch – in this case the rhetorical choice of the level
of realism or abstraction to depict the van – is a way the
algorithm has clustered the sketches. We likewise see in
our clusters a similar trend with object orientation, where
sketches within a category are grouped by alignment.

Figure 4. Vans (top) and Bears (bottom) Clustering. Clusters by
k-means clustering.

Because our features are related to the distribution of line-
orientations, we have confidence in the clustering results.
Diverse orientations and representations of the same object
produce varied orientations of lines, which the HOG fea-
tures are able to capture and k-means is able to cluster be-
tween. With more abstract or simple sketching styles, the

line orientation distributions will be more sparse and the
features are able to distinguish between very busy and very
cleanly drawn objects. Note however that there are object
category clusters that do not have any apparent differences.
For instance, we expected that clustering in the category of
books would result in opened and closed books, but instead
each cluster has both opened and closed books, and with
varying viewpoints of the object.

6. Conclusion and Future Work
We have presented various algorithms to classify a dataset
of sketches into their object categories. We have demon-
strated that we are able to achieve reasonable classification
of 57.7% using multiclass one-vs-all SVM. We also eval-
uated different classifiers with varying degrees of success,
though none outperform the one-vs-all SVM.

We believe sketching is a vast domain to explore, and
would like to continue improving performance on object
recognition within sketches. We aim to further pursue the
approach of a hierarchical cluster by building the hierar-
chical tree in a more sophisticated manner. This might pro-
duce a more balanced structure, thus improving classifica-
tion.

Another possibility is to experiment with more elabo-
rate features that include spatial and temporal information
about the sketch, to better learn the more subjective compo-
nents and drawing style. With a more complex feature ex-
traction method, we could additionally cover up portions of
the image, extract features from the image, and classify the
image to understand which parts of the image are most cor-
related with its identity. This yields insight on what makes
a certain category what it is and perhaps how we ourselves
internally identify everyday objects.

References
Dalal, Navneet and Triggs, Bill. Histograms of oriented gradients for human detection. In Pro-

ceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05. IEEE Computer Society, 2005.

Eitz, Mathias, Hays, James, and Alexa, Marc. How do humans sketch objects? ACM Trans. Graph.
(Proc. SIGGRAPH), 31(4):44:1–44:10, 2012.

Guo, Gongde, Wang, Hui, Bell, David, Bi, Yaxin, and Greer, Kieran. Knn model-based approach
in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and
ODBASE, pp. 986–996. Springer, 2003.

Hsu, Chih-Wei and Lin, Chih-Jen. A comparison of methods for multiclass support vector ma-
chines. Neural Networks, IEEE Transactions on, 13(2):415–425, Mar 2002. ISSN 1045-9227.
doi: 10.1109/72.991427.

Rojas, Raúl. Neural networks: a systematic introduction. Springer, 1996.

Rousseeuw, Peter J. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20(0):53 – 65, 1987. ISSN
0377-0427.

Sivic, J., Russell, B.C., Efros, A.A., Zisserman, A., and Freeman, W.T. Discovering objects and
their location in images. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, volume 1, pp. 370–377 Vol. 1, Oct 2005.

