
Predicting Usefulness of Yelp Reviews
Ben Isaacs, Xavier Mignot, Maxwell Siegelman

1. Introduction
The Yelp Dataset Challenge makes a huge set of user, business, and review data publicly
available for machine learning projects. They wish to find interesting trends and patterns
in all of the data they have accumulated. Our goal is to predict how useful a review will
prove to be to users. We can use review upvotes as a metric. This could have immediate
applications – many people rely on Yelp to make consumer choices, so predicting the
most helpful reviews to display on a page before they have actually been rated would
have a serious impact on user experience.

2. Data Set/Pre-processing
All of the data is made publicly available online1. All of the information is in JSON
format, which made preprocessing relatively easy. Yelp provides a set of:

-42153 Businesses: These objects included information about the actual business
being reviewed. Each contained features such as the average aggregate star rating, and
the total review count. We also included a flag indicating whether or not the business
was still operating.
-252898 Users: Each user object provided data on the person posting the review,
including a wide variety of information about the spread of other reviews that the
poster had written previously. We included features such as average number stars,
total number of previous reviews, time since joining yelp, and number of Yelp friends.
 -1125458 Reviews: Each reviews is matched to a business and user. These became
the actual training examples fed into each algorithm, after particular features were
extracted and combined with the information about the user and business in question.
Most importantly reviews were labeled with the total number of useful, cool, and
funny votes – in aggregate, these served as the target variable.

Initially, we ran each algorithm with feature vectors containing only metadata. We also
used text extraction on some of the reviews but the results did not seem promising
enough to combine the two. So each training example consisted of:

 {Review: Stars, Length of Text, Review Date}

{User: Review Count, Average Stars, Time Yelping, Number of Friends, Compliments(11
types)}

 {Business: Average Stars, Review Count, Open/Not Open}

Text features were extracted using scikit learn’s CountVectorizer on training example
review texts. This approach extracts text features from a set of documents and returns
token counts. We feed in all of the training example review texts (not the test data) and
this makes up the vocabulary used. As noted above, text features proved pretty unhelpful
so we decided not to append them to our final vectors.
Training examples were further normalized (zero mean, unit variance) using a built-in
scikit learn functions. The same scaling values were used on the test data after training.
After preprocessing, one of the major challenges of working with this dataset was the
spread of training examples. Many of the reviews (45.2%) had 0 upvotes, and the vast
majority (98.6%) had less than 20. Even on a log scale, the distribution is heavily
skewed:

!
 (Note the last bucket corresponds to 100+ upvotes)

3. Algorithms
We began by running linear regression to get a feel for the problem. However, it became
apparent that due the distribution of the data predicting upvotes on a continuous scale
through some sort of regression algorithm would be unlikely to produce valuable results.
Linear Regression gave very little useful information, predicting 0 in most cases.

So we decided to reframe the problem in terms of a 0-1 classification, and then also as a
several bucket prediction problem. We ran Gaussian Naïve Bayes, Logistic Regression,
and SVM with a linear SVC kernel (all supported by scikit learn2).
SVM: The kernel function used was the inner product of the feature vectors:
K(x(i), x(j)) = < x(i), x(j) > = x(i)1x(j)1 + … + x(i)nx(j)n

To pick a good threshold count for number of upvotes we ran our set of algorithms with
several different values (5, 10, 20, 50). Bellow is a plot of the testing accuracy at
different thresholds:

!

With this in mind, we picked a threshold of 20 because we reasoned that a cutoff of 50
left us with too few positive training examples.

Additionally, we used bootstrapping to counteract the poor distribution of the data set.
With bootstrap sampling we were able to get an idea of how effectively each of these
algorithms could perform. We did this by creating 40 smaller datasets consisting of equal
numbers of positive and negative training examples randomly pulled from the larger
dataset. Random sampling was performed with replacement – i.e., the different datasets

are not entirely independent. Then, each model was trained on all of the datasets, and the
results were averaged across all 40 subsets. This allowed us to push each model to
accurately predict positive examples rather than negative examples, which seems like a
more interesting problem to solve.

4. Results – Important Features
The table bellow describes the results of each of these algorithms while considering a
simple 0-1 classification. Score is a scikit learn function that represents accuracy for
classification algorithms. For linear regression this was the R2 coefficent of
determination. In this case, bootstrapped means that the dataset used was a randomly
selected subset of all the data containing an equal number of samples above the cutoff
and below the cutoff. Note that negative values for the coefficient of determination are
an artifact of the way it is calculated in the implementation we are using and can occur
when a model is tested on data it was not trained on. Each of these was trained on
1000000 examples, and tested on 10000.

For the review text vectors, we ran a Multinomial Bayes classifier again with a cutoff of
20 upvotes. Over 10 iterations, the average training and testing errors were:

Accuracy results using
metadata features

Training
Score

Score on Random
Test Sample

Score on Bootstrap
Test Sample

Linear Regression 0.3661 0.3733 -0.032

Bootstrapped Linear
Regression

0.3703 0.4163 -0.049

Gaussian Naive Bayes 0.9726 0.9782 0.7036

Logistic Regression 0.9879 0.9902 0.5501

SVM (SVC) 0.779 0.9058 0.5747

Bootstrapped SVM 0.9046 0.8909 0.83725

Bootstrapped Logistic
Regression

0.8848 0.9496 0.848

Model Sensitivity and
Specificity

True Positive Rate
(sensitivity)

True Negative Rate
(specificity)

Logistic Regression .147 .99

Bootstrapped Logistic
Regression

0.82 0.84

SVM .11 .99

Bootstrapped SVM 0.84 0.83

NB average training score 83.99%

Attempting to predict discrete bucket ranges was unsurprisingly less effective. We got
the following results:

5. Discussion/Conclusions
We started by trying to run linear regression on the data because the number of ratings on
a review is non-binary. However, we found that we got very poor results with that
approach: our initial results yielded an R^2 score of 0.3661. We therefore decided
discretize our output by using a single cutoff, where data above the cutoff is classified as
positive and data below the cutoff is classified as negative. After testing around, we
settled on a cutoff of 20 ratings for classification. With this cutoff, we ran Gaussian Naive
Bayes, Logistic Regression and SVM algorithms on the data and achieved might higher
success rates (full results shown above).
A big problem we had to deal with was data skew, as our logarithm histogram in our
Data/Preprocessing section shows: most of the reviews have zero or close to zero ratings.
As noted earlier we started training our models on even data sets (i.e., we took samples
from the dataset such that each of our samples was half positively classified and half
negatively classified). Bootstrapping, unsurprisingly, significantly improved the accuracy
of our models, because the random samples we took were guaranteed to have an equal
number of positive examples to train on. In particular, our true positive rates increased,
which is a tradeoff that makes more sense in the context of this project since predicting 0
often garners much less useful information than correctly predicting which reviews will
be popular. While models that were not trained on bootstrapped samples were superior at
classifying random samples from the data, their low sensitivity caused them to perform
very poorly when the test sets were constructed to contain an equal number of positive
and negative examples.
In terms of our best classifiers, both logistic regression and SVM performed well. While
our linear regression outperformed our baseline linear regression marginally, the negative
score on the bootstrapped data indicates that it wasn’t making any useful predictions
(mostly negative predictions, as discussed above). However, our best rates significantly
outperformed the baseline. Bootstrapped SVMs achieved a 95% success rate on random
test data and an 85% success rate on bootstrapped data. By contrast, our baseline
classifier (Naïve Bayes with a reduced feature set) scored 98% and 70% respectively. The
massive increase in accuracy on the bootstrapped data represents a large increase in the
usefulness of the model, since the ability to accurately predict positive examples is very
valuable. A theoretical oracle that already had access to all the data would only
outperform our bootstrapped SVM by 5% on the randomly sampled test set. However,
84% true positive and 83% true negative rates imply that there is still some room for
improvement since an oracle with access to all the data would have perfect sensitivity and
specificity.
The features we identified with the highest absolute weights were linked to how many of
certain types of Yelp compliments the user had received. However, the feature that we
identified as likely the most important was the number of Yelp friends the user had. Even
though this feature often had a lower weight than some of the compliment features, the
difference was fairly marginal (usually about .25). Further reinforcing the idea that the
number of Yelp friends is the most important feature is that fact that most users do not

NB average test score 75.64%

Recall for each Upvote Bucket [0, 5) [5, 10) [10, 20) [20, 50) 50+

Recall Rate 0.823 0.181 0.242 0.318 0.886

have many compliments on their profiles. This means that in the majority of cases, the
number of Yelp friends the user has ends up contributing the most to the decision the
algorithm makes.
We were somewhat disappointed that the features with the highest weights were usually
features related to user metadata, as discussed above. We had hoped to make predictions
based primarily off the text in the review, but this approach was simply inferior to using
the metadata as we can see from the relative accuracy rates above (75% versus 84%).
This result has precedent. In our research for this project we came across a study of
Twitter retweets, which also concluded that the most useful factor for determining
retweets was the user who posted.
After reaching a degree of success classifying using our cutoff, we attempted to use the
same learning algorithms (namely logistic regression) to classify the data into buckets.
Rather than just predicting whether the review would have more or less than 20 upvotes,
we attempted to predict what range the review would fall into. As expected, the accuracy
of this method was significantly worse than what we attained with just the cutoff.
However, the results are arguably more interesting since using buckets moves us closer to
making actual predictions. We can see from the recall rates for each bucket that the
algorithm was quite good at identifying examples that were on the high and low ends of
the spectrum, which we hypothesize is because these reviews are more easily
differentiable from the reviews in the middle of the spectrum. Some investigation
indicated that this is probably mostly related to number of friends each Yelp user had, but
this conclusion is complicated by the bucket sizes used. Further investigation could
possibly have helped identify the exact point where the reviews become harder to classify
and yielded insights into how these reviews are differentiated from the average review,
but we had to leave this for future work.

6. Future
One obvious next step would be to implement this on new reviews as they come in
(unlabeled) to provide a real testing set. It would also be interesting to see if more
complex learning algorithms like neural networks could give better results then out of the
box classifier implementations.
Additionally, more work could be done picking bucket ranges. These were arbitrarily
chosen, and while we would always expect classification to outperform a bucket
approach, work can be done to improve these predictions as well. We would also like to
be able to do more investigation into how what makes certain review buckets easier or
harder to predict, and identify cutoff points (in terms of number of upvotes) for where the
reviews become hard or easy to predict.

7. References

1. "Yelp Dataset Challenge" Dataset Challenge. N.p., n.d. Web. 12 Dec. 2014. <http://
www.yelp.com/dataset_challenge>.

2. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011
3. Tauhid Zaman, Ralf Herbrich, Jurgen van Gael, David Stern. “Predicting Information

Spreading in Twitter”. December 12, 2014. http://research-srv.microsoft.com/pubs/
141866/NIPS10_Twitter_final.pdf

4. Jordan Segall, Alex Zamoshchin. “Predicting Reddit Post Popularity”. <http://
cs229.stanford.edu/proj2012/ZamoshchinSegall-PredictingRedditPostPopularity.pdf>

http://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
http://research-srv.microsoft.com/pubs/141866/NIPS10_Twitter_final.pdf

