
Predicting Texas Holdem Hand Strength

James Bensson, Alex Eckert, Maxwell Wu

December 13, 2013

1 Motivation

It all comes down to this, you are in the final
round at the Texas Hold’em World Series of Poker
Championships. Just two people remain, you
and Jack Manningham, the “river runner,” who
just went all in. What should you do, call him
and try to end the game, or play it safe and let
him steal the pot? Dilemmas similar to this con-
stantly plague Texas Hold’em players and in order
to help answer this question we developed models
to predict a player’s hand strength based on their
betting behavior.

2 Variable Formalization

This paper will assume some basic knowledge of
Texas Hold’em terminology. We were first pre-
sented with a large amount of unformatted data
and had to decide on what to extract for use.

Target Variable - Hand Rank (HR)

Hand rank is defined as the percentage of other
combinations of two hole cards that a player’s
current two hole cards will beat in hand strength.
Hand rank does not take into account future ex-
pectations. Since poker hand rankings are lin-
ear, a higher hand rank strictly implies the hand
will win versus another hand of lower hand rank.
Knowing an opponent’s hand rank on the river
would thus allow a player to play with perfect
information.

Figure 1 shows an example of a hand with a hand
rank of .838. Although the player paired with the
highest card on the board will beat many other
hands, there are still many hands that can beat
the player’s hand, such as two pairs, triples, and
straights.

Figure 1: Example Hand Rank

Features

Initially, we used the following feature set for each
player:

• number of checks before the river
• number of bets before the river
• number of calls before the river
• number of raises before the river

As we progressed in our analysis we chose more
robust feature sets.

• Value of bet compared to the current pot
amount

• Number of bets in certain ranges compared
to the current pot

• Ratio of aggressive (bet/raise) moves to pas-
sive (check/call) moves

• Average bet in the round compared to the
pot size

• Number of actions in a certain round

3 Data

We initially leveraged an online poker frame-
work to generate player data, which allows users

1



Figure 2: Data Parsing Pipeline

to create their own poker robots, alter existing
poker robots, and play different robots against
each other. The main benefit of initially using
bot-generated data was transparency. No matter
what happens in a round, we see the bots hand.
Using bot data allowed us to get a sense for which
algorithms would work well, but was ultimately
not too interesting and did not accurately mimic
real world poker conditions.

We switched to using a dataset of human poker
games, provided by the University of Alberta
Poker Research Group. The data set is of poker
games played over IRC (by humans) and each
player has a limited amount of chips. Because
there is a scarcity of chips, players play to max-
imize their winnings and their behavior mimics
that of real-life poker.

The data was initially stored as individual
databases. Each database was organized in the
relational model, with a table of hands, a table
of rosters and a table of player actions for each
player. Getting the data into the form we wanted
was difficult and the pipeline we used for parsing
our data is depicted in Figure 2:

There were a number of different types of hand
databases stored overall. We chose to learn on no
limit, hold’em tournament data.

4 Models

We decided to try a few out-of-the-box learning
models in order to see which algorithms have the

(a) Actions vs. HR (b) Bet Size vs. HR

Figure 3: Feature Correlations

best results on our dataset. Note that we are
using the feature set defined above.

Linear Regression

To motivate linear regression, we first checked
for a correlation between our chosen features and
hand rank. As shown in Figures 3(a) and 3(b),
each feature is indeed correlated with hand rank.
Four of the five features: bet size, amount of bets,
amount of checks, and amount of calls are posi-
tively correlated with hand rank and the amount
of checks is negatively correlated with the hand
rank.

With the evidence for feature correlation in hand,
linear regression was a natural algorithmic choice.
To perform linear regression we first expanded
our feature set by incorporating not only a
player’s total game actions, but their individ-
ual round actions. The thinking here is that a
check during the flop may be weighted differently
than a check during the river when trying to pre-
dict the river hand rank. Furthermore, we added
more features by fitting each action and amount
with a fifth order polynomial. To determine the
most important features of our algorithm, we con-
ducted a forward search through the feature set.
Shown in Figure 4(a), as more and more features
were added, the error of the predicted hand rank
dropped.

The most important features were found to be:
The amount bet during the river, turn, post flop,
and pre flop. Next, to determine if we were over-
fitting or underfitting the data, we generated a
learning curve, shown in Figure 4(b).

Since the training error and test error converge
in the learning curve, we concluded that we were

2



(a) Error vs. Features (b) Learning Curve

Figure 4

Figure 5: Error vs. τ

underfitting the data. Unfortunately, due to a
shortage of any more features, we could not min-
imize our error any further. We calculated our
final average predicted hand rank error on a set
of 100,000 games where we trained on 80% and
tested on 20%. The average hand rank error was
16.97%. This result was roughly unchanged when
linear regression was run on the clustered dataset.

Locally Weighted Regression

Another approach we took to predict player hand
rank was locally weighted regression. We used the
same feature set with fifth order polynomials as
used in linear regression. Since locally weighted
regression is more computationally expensive, we
only examined 1000 games, training on 80% and
testing on 20%. Shown in Figure 5, we minimized
the hand rank error by varying the bandwidth
parameter τ .

The error-minimizing τ was found to be 0.2.
The minimum hand rank error was found to be
17.73%, about 1% greater than that generated
by linear regression. This result was also roughly

unchanged when locally weighted regression was
run on the clustered dataset.

Naive Bayes

Our goal with our Naive Bayes analysis was to
predict hand rank given classes of hands that a
player might have at the river of a poker round.
We reasoned that:

Players will not change their betting patterns
based on exact hand rank. Instead, they will usu-
ally change their betting patterns based on gen-
eral types of hands, i.e. bluffing hand, medium
strength hand, made hand (straights, flushes, full
houses, etc), or the “nuts (best hand possible).

Certain bet sizes are more likely to indicate cer-
tain types of hands earlier in the poker round. For
example, we reasoned medium sized bets might
be more indicative of a decent or very good hand,
while players may make more small bets when
they are waiting for a card to complete their
hand.

Types of actions on each round may indicate dif-
ferent hands. For example, someone who is call-
ing in earlier rounds but raising in later rounds
may mean they had a weak hand at first but a
strong hand after a certain card.

We decided on using six bins. We wanted enough
bins to make the information useful and applica-
ble, but not so many that players would have the
same behavior over different bins.

Choosing Bins and Features for Naive
Bayes

Because Naive Bayes is a classification algorithm,
we had to transform our continuous hand rank
and bet sizing features into discrete bins. We
found that having different bins for these greatly
changed the results, so we strived to have a bin
distribution that was both logical and produced
good results. We started the models with even
bin distributions for both hand rank and bet siz-
ing, but in the end we decided to primarily change
the hand rank bins due to the nature of hands and
hand rank distribution on hands that get to the
river. See Figure 6 for our final hand rank bin
distribution.

3



Figure 6: Final Bin Distribution

Figure 7: Error Rate Improvement

Results for Naive Bayes

When we first ran our Naive Bayes analysis with
a simplified feature set, the results were under-
whelming on the human data set and mediocre
on the poker bot data. As we added in bet sizing
features and more sensible hand rank bins, our
results greatly improved to almost perfect on the
bot data and about 50% exact bin prediction on
human data. Lastly, predictions using clustered
data input improved the human data prediction
rate to over 60% with a .903 average bin error.
Figure 7 shows our results as we iterated on our
model.

5 Clustering Player Types

The next idea we had was to model different types
of players differently. Anecdotally, there are a
number of different types of poker players. For
example, there are aggressive players who bet and
raise often, and there are also more risk-averse
players that fold readily when they dont have
a winning hand. We would expect a risk-averse
player and an aggressive player to bet very differ-
ently given the same hand, but there is nothing in
our model that captures this. For this reason we
decided to use K-Means clustering on all player
data in order to model different types of players

Figure 8: Distortion vs. k

differently. Unlike our Naive Bayes and Linear
Regression, we could use all the data we had to
determine how aggressive a player is. It was no
longer necessary that we actually saw the players
hand at the end of the round. For clustering we
used two features.

Features:

• AggressionFrequency = Bets+Raises+Allins
AllActions

• AvgRoundsP layed = Avg. # of rounds be-
fore the user folds

Our idea was to cluster the data into k clusters
and then partition our original dataset so that we
train on each type of player instead of the entire
dataset. The question then became, how many
types of players are there, or more formally, what
is the best value of k? Figure 8 plots the aver-
age within cluster variance (distortion) vs. the
number of clusters.

From Figure 8, we can tell that there is not strong
clustering in the data and also no clear choice for
k. We tried 3, 4 and 5 and found that 3 clusters
worked the best when we partitioned the data
and retrained our models. After running k-means
(with k = 3), our final clusters are depicted in
Figures 9 and 10. These diagrams are dependent
on what threshold we placed on the number of
player actions we had to see to cluster them.

Partitioning the data and training on different
models helped our Naive Bayes model jump ap-
proximately 10% in accuracy.

4



Figure 9: Clusters, > 100 Actions Seen

Figure 10: Clusters, > 1000 Actions Seen

6 Conclusion

In conclusion we used a player’s actions and bet-
ting patterns to predict their hand rank. Us-
ing three machine learning algorithms: linear and
weighted regression, Naive Bayes, and clustering,
we were able to improve our hand rank predic-
tions quite drastically.

Our final Naive Bayes algorithm on clustered data
was able to predict the exact bin (out of 6) that
a poker players hand was in 60% of the time and
on average the prediction was off by less than one
bin. At first, we thought that predicting human
trends would be extremely hard due to the nature
of poker (with humans trying to trick each other),
but we ended up with an algorithm that could
perform well without extensive data on a specific
player.

One issue we had in our human data was that
it was incomplete due to the nature of our data
source. We hope that our algorithms could per-
form better with complete information of every
hand instead of only certain hands, which could
be explored in the future.

7 References

[1] Tefilo, L. F., Reis, L. P. 2011. Identifying

Players Strategies in No Limit Texas Holdem

Poker through the Analysis of Individual

Moves.

[2] Computer Poker Research Group. University of

Alberta, 2013. Web. 5 Dec. 2013.

<http://poker.cs.ualberta.ca/>.

[3] Poker Academy Pro -The Ultimate Poker

Software. 2013.

<http://www.poker-academy.com>

[4] Open Meerkat Poker Testbed. 2013.

<http://code.google.com/p/opentestbed>

5


	Motivation
	Variable Formalization
	Data
	Models
	Clustering Player Types
	Conclusion
	References

