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I. Introduction

This project is a clustering application of gene expression data in different tissue
types. We have a large dataset of gene expressions (78 samples*25134 gene
sequences), where 39 samples are data from kidney and the other 39 from liver. The
gene expression level of one specific gene sequence is quite similar in different
tissue types. So our intuition is that most gene expression would be the same across
all tissue types, yet cell differentiation lies in a small group of genes. We are
particularly interested in identifying these gene sequences.

II. Motivation
The gene expression data are large, messy and highly correlated. Here is a plot
of 500 randomly selected gene expression data from our dataset.
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The color in each cell represents a certain level of gene expression activeness. From
the figure we can see a clear boundary between sample 39 and sample 40, which
indicates differences in gene expression activeness in different tissue types.
However, the figure overall has great similarity among samples, which also verifies
our intuition that most part of gene expression would be similar in cell
differentiation. That's why we propose this method to identify similarity and
difference in gene expression data of different tissue types.

Traditionally biological data are clustered using PCA technique. But results
from PCA are also messy, meaning that loadings of each principle component or
cluster are mostly non-zero. This property of PCA make interpretation extremely
hard, as non-zero loadings would exhaust researchers’ attention in finding
significant gene sequence. So we propose using sparse PCA, a modification of
traditional PCA to impose a similarity in clusters of different tissue types and a
sparse loading of each cluster, which would help to solve this problem.



III. Problem Definition

The problem we want to tackle here is to build up a system that can identify
similarities and differences among gene expressions in different tissue types. The
hypothesis for this problem is that most gene expressions in different tissue types
should be the same, while a small portion of genes expressed differently, which lead
to different functionality of tissues.

In this project we only investigated into 2 tissue types for comparison. The
input data of this system would be 2 n-by-p matrix, where n is the number of
samples in a specific tissue type and p is the number of gene sequences extracted.
Data in each cell of the matrix represents the gene expression activeness in the
specific tissue type and specific sample. The higher the gene expression activeness
is, more frequently that DNA sequence has been translated into proteins. The
outputs are 2 clusters of 2 different tissue type, a shared loading matrix of the two
clusters. And how the system works will be illustrated in the Approach section.

IV. Approach

A nice output from the system has the following properties: (1) 2 top K clusters
from 2 different tissue types that are close enough but yet preserve some
differences. (2) Shared loading matrix of the 2 cluster sets that is also sparse. (3)
The model should also achieve best prediction error.

In order to achieve a nice output stated above, we use Sparse PCA technique,
along with cross-validation to find the optimal parameters such as # of PCs and
shrinkage parameters.

Sparse PCA
The idea of Sparse PCA is to solve the following objective function:
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We use X1 and X to denote the gene expression data for 2 different tissue types.
Here PC; and PC: are the two cluster sets for X: and Xz. The first 2 terms of the
objective function is to ensure minimum reconstruction error. We use L1
regularization for the last 2 terms, as sparsity would be nice property of L1
regularization. The term Bli is to ensure a sparse shared loading matrix of the two
clusters. And the last term is to ensure similarity between the two clusters
constructed.

The way to solve this objective function is using the following algorithm:

Step 0: Assuming that the algorithm will produce PCs of size K, meaning that PCy
and PC; are both n-by-K matrices. B would then be a K-by-p matrix. Initiate
PC4, PC2 and B to be matrices with all entries zero.

Step 1: Assume PC; and B are fixed, the objective function becomes an ordinary
LASSO of matrix PC; after a linear transformation. This can be solved for PC:
with LARS algorithm that will be explained later.



Step 2: After getting an optimal PC1 given PC; and B, we can do the similar
procedure for PCz and B, which in turn will give optimal result given other 2
matrices constant.

Step 3: We can obtain the optimal results of PC1, PCz and B by iterating between step
1 and step 2 until convergence.

LARS Algorithm to solve lasso problem:

General form of lasso problem: f = argmin|[¥ = XAll; + A5l

Step 0: Start with all coefficients [3; equal to zero.

Step 1: Find the predictor X; most correlated with Y

Step 2: Increase the coefficient f3; in the direction of the sign of its correlation
with y. Take residuals r=y-yhat along the way. Stop when some other
predictor Xk has as much correlation with r as X has.

Step 3: Increase (f3;, 3,) in their joint least squares direction, until some other
predictor X, has as much correlation with the residual r.

Step 4: Continue until: all predictors are in the model

These two algorithms would give optimal results given parameters K, A1, A2. But in
order to find the optimal parameters K, A1 and A2, we can try a grid of values of K, A1
and Az and use cross-validation to find ones that minimize the prediction error.

Cross-Validation algorithm:

Step 1: For a given value of parameter set ©® = (K, A, A,), divide the training
set to be M roughly equal datasets. Use M-1 sets as training and the
remaining one as a validation set.

Step 2: Use the M-1 sets as training to get the optimal results from the above
objective function. Then use the remaining one set to compute
prediction error. Do this for all combination of M-1 possible sets and
compute the average prediction error. This would be the cross-
validation error for the given parameter set O, called CV(O).

Step 3: Do step 2 for all possible values of ®, and the final result would be ®*
with minimum CV(©).

One last problem of building this system is how to evaluate the performance.
For this system, the whole point is to find results that produce minimum prediction
error. So prediction error is the primary evaluation of the system. The way to do this
is to extract a small portion of the input dataset as the testing dataset, replace the
holes with average of the specific gene sequence in specific tissue type. After that,
using the new dataset as the input data and solve in the system. This test dataset
would be used to evaluate performance of the system.



V. Result

This result is important because it gives a guideline for scientists to investigate
into genes that have different activeness level. And it may lead to other findings in
genetic studies.

The cross-validation error for parameter set © = (K, A,, A,) has the following
plots:

0.047

0.048
00475 | .o
ooaz | .1
0.0465

0.046 | ..o

00455 | .o T I —o.04ss

0.044

0.0435

This plot clearly showed a surface of prediction errors of a grid of A1 and A2. Each
surface is corresponding to a value K, the number of clusters produced by the
system. All surfaces in the plot achieves the minimum cross-validation error at A1 =
0.01 and A2 = 0.01.

If given A1 = 0.01 and A2 = 0.01, the plot for different K values is:
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Hence the value K that achieves the global minimum error is K = 4. We can then pick
K=4,21=0.01and A2 = 0.01 to be the optimal parameter set for this specific
dataset.



Given these selected parameters, the system produces clusters of prediction error
0.0431 on the preselected test dataset.

VI. Future Work

After the system gives out two cluster sets for 2 tissue types, it is also critical to
look into biological meaning of the results. Since we imposed for a similarity
between the two cluster sets, it would be interesting to investigate into the
difference between the two sets. That difference would potentially lead researchers
to find gene sequences that played a significant role in cell differentiation.
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