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Abstract

Webpages of online articles typically contain one or more images which are rele-
vant to the article, such as a photo of a key person or a graph of figures mentioned
in an article, and many images which are irrelevant, such as links to related arti-
cles, “share” buttons, and advertisements. Given the HTML source to an article
webpage, but without actual image data, we are able to train a model able to dis-
tinguish the two classes of images with high accuracy.
Relevanseek was the winner of Diffbot’s Machine Learning Challenge for this
classification problem.1

1 Introduction

Figure 1: Example of an article with relevant images
highlighted in green and irrelevant images highlighted
in red.

Diffbot[1], a company specializing in
automated content extraction of web-
pages, posted a challenge: given the
HTML source to an article, determine
which images are relevant to the arti-
cle content.

An example article is shown in Fig-
ure 1. This particular Slate article
has text content about some flying
gadgets, and includes a relevant im-
age of one such toy at the top of the
page. Other images on the page, such
as social media buttons, the author’s
photo, and related article thumbnails,
are irrelevant to this article.

It is easy to see why an effective al-
gorithm for this task is valuable. For
example, when sharing a URL on a service like Facebook or Skype, a thumbnail might be generated
from one of the relevant images on the target webpage. As another example, a browser user agent
(either a local client or a hosted service) can try to strip out irrelevant information, intrusive styles,
etc and leave the reader with just relevant text and images with plain formatting. Determining which
images are relevant is a key component of both of these systems.

Diffbot has provided a training set consisting of the raw HTML source for several articles. Because
the actual images are not included in the data set, all analysis is performed on the HTML source only.
However, Diffbot has annotated the source with a small amount of helpful information. Specifically,

1Sadly, Relevanseek was the only submission in the contest though many teams signed up. Whether this
means others were unable to produce competitive programs, or whether they dropped out for some other reason,
is unknown to the author.
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selected HTML element tags are annotated with an extra element describing how the element is
rendered in Diffbot’s browser implementation. For example, the image of the helicopter is described
by the following annotated HTML tag:

<img src="..." alt="..." _="x=54,y=421,w=250,h=153,mbo=5px,dis=inline">

The extra “ ” attribute describes the rendered (x, y) position and size, the bottom margin (5px), and
the display mode (inline). This information can be used to obtain valuable features.

2 Architecture

Feature extraction
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Weka LibSVM
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...
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Figure 2: Processing flow of one document through
Relevanseek’s pipeline.

Relevanseek is written entirely in Java. Its
core pipeline consists of three principal
components. The same pipeline is used
whether the intent is to train, evaluate train-
ing using cross-validation or other meth-
ods, or to predict unknown samples.

2.1 Page parser

As the first step in the pipeline, the parser
builds a DOM using jsoup[2], and then
sanitizes and normalizes the resulting tree.
The resulting well-formed DOM is then
converted to Java’s native DOM structure.
From this, the the parser builds a list of im-
ages and extracted image features (more on
this in §3). If labels are known, then the
parser associates each image with its label.
The parser produces a strongly-typed data

structure to avoid potential bugs caused by inconsistent interpretation of matrix values.

2.2 Classifier interfaces

The parser hands off extracted information to one of the many classifiers. The classifiers are
designed to be pluggable and extend a common interface IClassifier in order to facilitate
rapid development feedback and short iterations. Switching from one classifier to another to
test different models requires only swapping half a line of code. Most of the classifiers (e.g.
NaiveBayesWekaClassifier, LibSVMClassifier) simply perform translation between
Relevanseek’s native format and the underlying library’s required format, but it is also possible to
write custom classifiers. For example, the LeastSquaresLinearRegressionOLS classifier2

is implemented using only JAMA[3], a generic matrix library.

The classifier architecture also allows parameters (e.g. bias for unbalanced data set) and composition
(e.g. AdaBoost) or other arbitrary refinements without any changes in the application layer.

2.3 Classifier backends

To avoid reinventing the wheel, we reuse existing high-quality machine learning libraries. Several
classifiers are wrappers for Weka[4] and LibSVM[5], which both have pure Java interfaces and
implementations. By placing the backends behind this abstraction layer, arbitrary backends can be
used by Relevanseek without any changes to the application layer.

2While the OLS classifier was useful for rapid early prototyping, its results are not included here because
the features being used led to singular matrices.
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3 Feature extraction

Relevanseek reduces each image to a vector of features along with a binary label. About 30 of these
features are static, including:

• Size of image
• Distance between image and the four edges of the rendered webpage
• Length of the alt and title attribute values
• Similarity of alt and title value values compared to header and title text
• Number of other images rendered close by
• Number of other identically-sized images
• Whether image’s bounding box overlaps with elements like <p> or <article>
• Whether the image is a hyperlink
• The size of the smallest rendered ancestor
• The position of the first text-heavy ancestor element

Two of the features are generated based on the training data:

• Whether the image or its ancestor elements contain certain strings in their class and/or
id attributes

• Whether the image has an ancestor of some specific tag name (e.g. <figure>)

Each feature is implemented as a class extending a common IFeature interface. Similar to the
common interface for all classifiers mentioned previously, this allows rapid feedback for feature
performance and enables automated feature selection.

4 Results

4.1 Classifier performance

Because of the unbalanced data, even the trivial “always irrelevant” classifier achieves 96.4% accu-
racy. Thus, we use the F1 score to measure performance.

Classifier performance is determined using 4-fold cross validation, training each classifier on 75%
of the labeled documents and predicting image relevance in the remaining documents. The training
set consists of 600 documents containing 25509 images, of which 906 are relevant.

The cross-validation performance is as follows:

Classifier Accuracy Precision Recall F-Score
SVM (RBF) 0.972 0.601 0.625 0.613

Logistic* 0.971 0.614 0.461 0.527
Perceptron* 0.963 0.475 0.464 0.469

Naive Bayes* 0.933 0.320 0.796 0.457
Always irrelevant 0.964 - 0.000 -

Always relevant 0.036 0.036 1.000 0.069

* With AdaBoost

4.2 Learning curve

The learning curve for the SVM classifier is shown here. While precision and recall on the training
set remains high throughout the curve, accuracy on the test set during cross-validation plateaus after
about 300 documents. Although the learning curve may suggest high variance and overfitting, each
one of the many features contributes positively towards testing accuracy and removing any of them
reduces testing accuracy. One challenge of this particular problem is the large amount of information
included in each HTML page; it is difficult to represent all of the relevant information into a concise
set of real numbers.
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Figure 3: SVM testing and training F-scores dur-
ing cross-validation with 4 folds

Given more time to continue this strategy and
implement more features, we believe the test-
ing accuracy plateau can be shifted up and to
the right, and an F-score of 0.75-0.80 is rea-
sonably achievable.

5 Limitations and future work

Relevanseek compresses information about
each image into a single feature vector, which
may be overly restrictive. In addition, this
creates the implicit assumption that the clas-
sification of each image is independent of
others in the same document. Building more
complex models could improve performance. For example, the popular AdBlock program detects
advertisements primarily by using simple pattern matching against URLs, which is not well-suited
for classification using numeric features; a similar strategy could be added to Relevanseek to effi-
ciently eliminate several classes of irrelevant images.

Another potential improvement is filtering dirty data. Diffbot provides a training set of about 600
labeled documents, but the labels are not always accurate (some labels are malformed, some are
missing, some are duplicated, some are wrong based on manual judging by the author). Exploring
options to either clean up the data as a preprocessing step or to filter out bad training data may
improve performance.

Finally, one quirk of this task is that Diffbot provides the <img src="..."> attribute in the
training data, but not the evaluation test set, even though the URL of the image provides useful
information regarding the relevance of the image. For example, a simple image feature describing
the end of the image URL (e.g. .png vs .html etc) improved accuracy in cross-validation, but
had to be removed for classifying the test set. Similarly, another possible feature could be generated
by comparing the domain of the image source to the domain of its containing webpage, or to look
for certain keywords in the URL (e.g. “share”).

6 Conclusion

We have described a supervised learning classifier for determining whether images in an HTML file
are relevant to their containing article. The documents are parsed and images are processed into
vectors of carefully chosen features, and several learning algorithms are compared for accuracy. By
choosing an appropriate classification algorithm, relevant images can be chosen with high precision
and recall.
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