A Machine Learning Approach to Webpage
Content Exraction

Jiawei Yao
Department of CS
Stanford University

Email: jwyao@stanford.edu

Abstract—Apart from the main content, a webpage usually
also contains boilerplate elements such as navigation panels,
advertisements and comments. These additional elements are
typically not related to the actual content and can be treated
as noise that needs to be removed properly to improve the user’s
reading experience. This is a difficult problem as HTML is loose
in semantics and flexible in structure. In this paper, we model the
webpage content extraction problem as a classification problem
and employ machine learning method to solve it. For each text
block in the HTML document, we select a set of relevant features,
based on which an SVM classifier is used to predict whether this
text block is content or non-content. The results show that our
approach can achieve performance comparable to some popular
existing algorithms in this field.

Keywords—text mining, content extraction, web semantic, algo-
rithm

I. INTRODUCTION

Over the years, the Internet has become lots of people’s
primary source of information and people are spending more
and more time on web browsing. The news sites, blogs or other
information-rich websites, for various reasons, displays many
boilerplate information such as advertisements and navigation
panels alongside the main content (see Fig. 1 for example).
It is desirable that these boilerplates be removed because:
1. generally they are a distraction to the users and overload
of them greatly breaks reading experience, 2. they hamper
information retrieval and the removal of them will benefit
search engines, and 3. not all websites are optimized for hand-
held devices which have relatively limited screen space and
extraction of main content can provide a hand-held device
friendly view. The popularity of many read-it-later services like
Instapaper, Pocket and Readability demonstrates the important
of content extraction.

However, the removal of these noisy elements is nontrivial,
because HTML is not a semantically strict language and
enforces no structural constraints, so content providers are free
to compose HTML in whatever way they like. Although the
latest standard, namely HTMLS, promotes semantics of HTML
by introducing tags like <article>, <nav> and <aside>,
the standard has not been widely adopted. To improve this
situation, webpage Content Extraction (CE) algorithms were
introduced and CE has been an active research area for the
past decade. Many early efforts rely heavily on heuristics about
webpages with main content, such as text density, text-to-tag
ratio, etc, which are not universally applicable and might break
randomly because of the flexibility of HTML.

In this paper, we put webpage content extraction in the
machine learning setting and introduces a supervised learning

Xinhui Zuo
Department of MS&E
Stanford University
Email: xzuo@stanford.edu

Fig. 1: Example webpage: original on the left, annotated main
content on the right

approach to content extraction. We break an HTML page into
text blocks which is structure-independent and extract features
from the text blocks. An SVM classifier is trained on the
text blocks and will be later used to predict the content of
test documents. We also do semantic analysis based on id
and class attributes associated with text blocks using Naive
Bayes algorithm. The result of semantic analysis can be incor-
porated into features of text blocks to improve classification
accuracy. Experiments are conducted on two datasets from
2008 and 2012, which represent characteristics of webpages
from several years ago and webpages with more recent trends
respectively.

The rest of this paper is organized as follows: Section II
gives an overview of works related to airplane model recogni-
tion problem. In Section III, our approach of airplane model
recognition is explained in detail. In Section IV, the dataset,
design and evaluation metrics of the experiment are described.
Results of the experiment and discussion are presented as well.
Finally, Section V gives conclusion of this paper and puts
forward some future work.

II. RELATED WORKS

Some of the existing algorithms [1][2][3][4] are based on
the observation that compared to the content fragments, the
non-content fragments of an HTML document are usually
highly formatted with more tags and also contain less text
and shorter sentences. As a result, non-content fragments
have a higher tag density while the content fragments have
a higher text density. Specifically, a number of features on the
block level are evaluated according to their information gain

(Kullback-Leibler-divergence) in [1], among which the number
of words and link density are proved to be the most relevant
ones.

Alternatively, when a web page is divided into a tree whose
nodes are visually grouped blocks, spatial and content features
may also be used to detect the non-content nodes in this tree as
in [5]. This approach is called Vision-based Page Segmentation
(VIPS) technique and it suffers from high computational cost
to render a page in order to analyze it. There are also some
other approaches like template detection algorithms which
classify the identical parts found in all webpages as noisy
components [6]. Apparently, the application of these algorithm
is limited to webpages from the same website, and thus it
would be cumbersome to build models and templates for
different websites or different versions of one website.

In this project, we adopted the definition of blocks in
[1] and model webpage context extraction as a classification
problem on the block level. For this classification problem, we
have selected three types for features: text features, relative
position and id & class token feature and used SVM
as classifier. The blocks classified as content would then be
merged to construct “clean” webpages, which are compared
with the gold standard. The results of our machine learning
approach is comparable to the performance of the algorithm
in [4].

IIT. OUR APPROACH

Our approach is, like many other popular content extraction
methods, text block based. We blockify training documents
and train an SVM classifier based on features extracted form
the blocks. For test documents, the same blockify algorithm
is applied and the blocks classified as content are extracted to
construct the main content.

A. Blockifying

Although many previous works are block-based, they do
not document the blockifying process clearly. In our approach,
we use HTML parser to traverse the HTML DOM tree and
accumulate relevant information such as text and links as
traversing, when the beginning or end of a block-level element'
is reached, we output the accumulated text as a text block.

B. Feature Extraction

As we are transforming the content extraction problem
into a classification problem, we wish to use features that are
strongly indicative whether a text block is content or not. In
our approach, we select three types of features: text features,
relative position, and id&class token feature.

The first type is called text features, which are extracted
based on text properties inside a text block. According to the
evaluation of block features based on their information gain
(Kullback-Leibler-divergence) in [1], for each block we have
selected seven most relevant features:

IBlock-level elements are formatted with a line break before and after the
element (thereby creating a stand-alone block of content). Note that we also
treat
 as block-level element as it modifies text flow.

e number of words in this block and the quotient to its
previous block

e average sentence length in this block and the quotient
to its previous block

e text density in this block and the quotient to its
previous block

e link density in this block

The definition of features such as number of words and
average sentence length are intuitive and trivial, and the link
density is calculated as the ratio of number of words within all
<a> tags associated with the text block to the total number of
words in the block. As in [1], we assum that the there are 80
characters in a line, and the text density of a block is defined as
the average number of words in one line, which is calculated
as the ratio of the total number of words to the total number
of lines.

The second type of feature is the relative position of a block
in the webpage. To be specific, for a document divided into NV
blocks, we discretize their position into M relative positions,
and the relative position of the n'” block is

relative_pos(n) = L% x M |

The last type of feature is the id&class token feature.
In modern HTML documents, the id and class attributes
capture the semantic information in the HTML left behind by
programmers[4]. For example, tokens such as ad and nav
usually indicate that the associated elements are non-content.
But of course we don’t want to manually analyze and collect
such indicative tokens, which will be not only heuristic-based
but also non-efficient. Thus we employed the event-model
Naive Bayes algorithm to learn the top N (which we set to
10) id and class tokens that are the surest indicators of
non-content blocks?>. We compute the probability and score of
k-th token as follows (assuming there are m blocks):

S) =k ay® =1} +1

i’ Y)Y 1zl =k Ay =0} +1
He S 1O =0 + V]
¢k|y:0 .
scorey, = logr x #blocks — with(k)
kly=1

The first two equations are multinomial event model with
Laplace smoothing and the third equation is weighted score
of k-th token. We select tokens with 10 largest scores® and
add 10 binary features indicating whether a block has the
corresponding token or not.

2With preliminary analysis, we found that indicative tokens for content
blocks vary but for non-content blocks are relatively stable, so we use
indicators for non-content blocks only.

3A sample list of such tokens from our are: menu, module, nav, widget,
sidebar, footer, right, dropdown, cat, nagivation.

C. SVM Training and Classification

After feature extraction, we label each block as content or
non-content based on whether they appear in the gold standard.
Then we employ SVM to this binary classification problem
on the block level with eighteen features as decried in the
previous section. Following the suggestions in [7], we first
scale all the attributes’ value to the same range so that the
features with a higher absolute value wouldn’t dominate the
value of the kernel output. Since we are using large datasets
and the dimension of our feature set is relatively small, radial
basis function (RBF) would be a good choice as the kernel.
We also tried parameter tuning as described in [7] but the
improvement is negligible so in our final evaluation we just
use default parameters of C' and ~.

After the SVM classifier is obtained, when a test document
is given, we first use the same blockify method to break test
document into blocks and then use the classifier to label the
blocks as content or non-content. Texts from all the content
blocks are then merged to form the extracted content.

IV. EVALUATION
A. Datasets

Two datasets were used to evaluate our approach. The
first one is the L3S dataset, which consists of 621 manually
classified Google News articles from 408 different web sites
in 2008 from [1], and the second one is the Dragnet dataset,
which consists of 1380 webpages from RSS feeds, news
websites and blogs in 2012 from [4]. Each dataset have either
manually marked content or manually extracted content, which
can be used as gold standard.

With some inspection, documents from the L3S dataset are
generally simple-structured and most text are main content,
while documents from the Dragnet dataset are more complex-
structured with heavy boilerplate elements, some even con-
taining long comments. Therefore, both datasets represent
webpage design trend of their respective times. As we aim
to build a generic content extraction tool, a well handling of
both datasets would be highly desirable.

B. Performance metrics

The evaluation metrics are based on both the bag of
words and longest common subsequence of gold standards and
extracted contents. Specifically, precision, recall and F} scores
are calculated. For evaluation with bag of words, we have the
precision and recall as

Wp N Wy
P=——
' [Wp

Wp N Wy|
Ry=————
! Wy

where Wp is the set of words we have classified as content
and Wy, is the set of words in the gold standard.

For evaluation with longest common subsequence, where
each word in the document is distinct even if two worlds are
lexically the same. This metric is more meaningful as what
users finally see are paragraphs of text instead of discrete

words. Let LCS(P,L) denote the longest common subse-
quence between the predicted content and gold standard, we
have the precision and recall as

_ LOS(P,L).length

2

P.length
Ry — LCS(P, L).length
2 L.length
And the F score is calculated as
2
Fr=—
B3

We define the metric as token-level F} if P = P, R = Ry,
or LCS F; if P = P, R = R>. When evaluation, we use both
token-level F} and LCS F} as evaluation metric.

C. Experiment Design

In evaluation, we randomly chose 600 documents from
each datasets and run 5-fold cross validation on it. For each
run we collect evaluation metric described as before and use
the average as the final metric. We apply different feature set
combinations to train the classifier:

e text features only
e text features + relative position features

e text features + relative position features + id&class
token features

We use method from [4] as baseline, which uses combina-
tion of features from [1], [2] and CSS features and is method
with the best performance we are able to find.

D. Results and Discussion

The experiment results on the L3S dataset is in Fig. 2 and
results on the Dragnet dataset is in Fig. 3. The blue bars are
token-level F; and the green bars are LCS F}.

Firstly, we can see that for both datasets our approach is
comparable to the baseline method (and even outperforms it
a bit in the L3S dataset). This is a good indicator that our
approach can accurately extract main content from documents
with diverse characteristics. It is noticeable that on the L3S
dataset both F; measures are close to 0.9 while on the Dragnet
dataset they are around 0.8. This aligns with our previous
observation that documents from Dragnet datasets are more
recent and complex-structured, which makes content extraction
much harder.

Secondly, considering different feature sets, we can see that
on the L3S dataset, the differences in F; measures using dif-
ferent feature combinations are very small. But on the Dragnet
dataset, adding 1d&class token features gives a non-trivial
increase in Fj. This may result from the trend that HTML
documents contain more semantic id & class tokens in
recent years as semantic HTML has been promoted. Looking
forward, we believe that with HTML5 document become more
semantically rich, the id&class token features (or other
equivalent features capturing semantic part of a document) will
play a more important role in content extraction.

Token/LCS F1 Measure on L3S Dataset

0.8r

0.61

0.4r

0.2r

text text+pos text+pos+class BASELINE

Fig. 2: Results on L3S dataset

Token/LCS F1 Measure on Dragnet Dataset
091

0.8r
0.7r
0.5F

0.3r

01r

text text+pos text+pos+class BASELINE

Fig. 3: Results on Dragnet dataset

Thirdly, we also manually inspected extracted content of
some document as we believe what really matters is what
the user actually sees. To our disappointment, although the
metrics are good, some of the extracted content misses some
parts of actual main content, some in the beginning, some
in the end, and others in between. From a realistic setting,
extracting extraneous part is bearable, but missing some critical
content is never acceptable. Maybe we can add an evaluation
measure which record whether all text in gold standard appears
in extracted content and apply some technique to ensure that
in the future.

Last but not least, LCS F} is consistently lower than token-
level F7i in each experiment, which is expected as LCS F} is a
more rigorous measure. However, this also reminds us that for
evaluation’s sake, token-level I} can be a reasonable proxy of

LCS F}, which is more expensive to compute.
V. CONCLUSION AND FUTURE WORK

Webpage content extraction is a difficult and interesting
problem to tackle. In this paper, we put this problem into
a machine learning perspective and introduced a supervised
learning approach which can solve this problem to some
degree. With preliminary evaluation using two F} measures,
our method can achieve comparable performance to the state-
of-the-art method.

However, our approach is far from perfect (actually, content
extraction problem is an Al-complete problem so there might
never be a perfect solution), for example it may extract more
content than necessary or even miss part of main content. Some
techniques shall be added to ensure the completeness of the
extracted content - many previous works assume the continuity
of main content, which may not be 100% true but is applicable
to most cases.

At this stage, we used a set of features that are re-
ported to have the highest information gain (Kullback-Leibler-
divergence) in [1]. In the future, other feature selection
methods, such as forward/backward feature selection, can be
employed to evaluate a larger set of relevant features.

Moreover, at this moment we only have the data set
from [1], which has been manually classified to set the gold
standard on the block level. When data set with gold standard
at a larger scale is available to us, instead of classification
problem defined on the block level as in [1], we would like to
explore the possibility of intra-document analysis. We expect
the HTML DOM tree structure and semantics to have potential
contribution to content and non-content classification problem.

ACKNOWLEDGEMENT

We would like to thank the CS299 staff and others for
reviewing our poster and offering constructive suggestions. We
greatly appreciate Mr. Matt Peters for kindly offering us the
Dragnet dataset for evaluation.

REFERENCES

[1] C. Kohlschutter,P. Fankhauser, and W. Nejdl. Boilerplate detection using
shallow text features. In Proceedings of WSDM ’10, pages 441-450.
ACM, 2010.

[2] T. Weninger, W. H. Hsu, and J. Han. CETR: Content Extraction via Tag
Ratios. In Proceedings of WWW 10, pages 971-980. ACM, 2010.

[3] F. Sun, D. Song, and L. Liao. Dom based content extraction via text
density. In SIGIR, volume 11, pages 245-254, 2011.

[4] M. Peters, and D. Lecocq. Content Extraction Using Diverse Feature
Sets. In Proceedings of WWW 13, pages 89-90, 2013.

[5] R. Song, H. Liu, J. Wen, and W. Ma. Learning block importance models
for web pages. In Proceedings of WWW ’04, pages 203-211, 2004.

[6] L. Chen, S. Ye, and X. Li. Template detection for large scale search
engines. In Proceedings of SAC ’06, pages 1094-1098, 2006.

[71 C. Hsu, C. Chang, and C. Lin. A Practical Guide to Support Vector
Classification. Technical report, Department of Computer Science and
Information Engineering, National Taiwan University, Taipei, 2003.

