

Applications of Machine Learning on Keyword
Extraction of Large Datasets

Meng Yan 1
my259@stanford.edu 2

Abstract 3

Given a large text dataset composed of greater than 200k training sets and 4
multiple classifications, various machine learning algorithms were used to 5
train and predict tags and keywords. This project also explores various 6
techniques in pruning and managing a large, unwieldy dataset in order to 7
produce a practical training point. Naïve Bayes and SVM are the algorithms 8
focused on in this project, with various contours of the dataset tested to 9
examine the practical effects of dataset manipulation. 10

 11

1 Introduction 12

Keyword extraction is a common problem that exists today due to the rapid growth of data 13

available online and in databases. In order to make such a large body of information readily 14

accessible to the general public, it is pertinent that accurate and efficient text classification 15

algorithms are used to sort and index this information. 16

 17

For this project, I utilize a large set of data provided by Kaggle from their competition 18

“Facebook Recruiting III – Keyword Extraction”. This competition involves training on an 8 19

GB training set to predict the tags for a 2.3 GB testing set. Broken down, the data consists of 20

roughly 6 million training examples with 2 million testing examples, and a total of 42000 21

different tags, with the possibility of multiple tags associated with a single example. As 22

such, the data management and computer workload management is a nontrivial task. For the 23

purposes of this project, I decided to limit myself to 200k examples from the data set, 24

training on the 10 most prevalent tags. 25

 26

First, the raw data used in this project will need to be processed and pruned into a 27

manageable and useable format. This will involve applying various techniques learned in 28

class, such as stemming, stop words, and filter feature selection. After parsing the data, 29

Naïve Bayes and Support Vector Machine algorithms will model the data and be compared 30

against each other for both accuracy and computation time. Finally, different contours of the 31

data will be explored to see the effects on accuracy and computation time, in hopes of 32

finding an approach that can be extrapolated to the entire 10 GB data set. 33

 34

2 Dataset Manipulation 35

Each of the training sets contains four components: index, title, body, and tags. The tags are 36

based on information derived from the title and body, which are plaintext components of 37

arbitrary length. Based on a rough analysis of only the first 50,000 training examples, there 38

are around 1.6 million unique words in their titles and bodies alone, with 13,000 unique tags. 39

Clearly, the data must be pruned in order to create a usable dataset. 40

 41

In this project, only the first 200k training examples were used and categorized based on the 42

top ten most used tags {c#, java, php, javascript, android, jquery, c++, python, iphone, 43

asp.net}. Simple cross validation was used, with a 75%/25% split between training and 44

testing examples. The idea is that the time to test each model for the full set of data will be 45

roughly proportional to the smaller test set used here. The time to train the models, however, 46

will drastically increase with the size of the dictionary. Fortunately, the actual act of training 47

has to be done only once, and can be prepared in advance. As such, computation time will 48

examine mainly testing time with the models as opposed to training time. 49

 50

The following pruning techniques were applied to create a manageable dataset. 51

- Only title information was used, and body information was ignored as it drastically 52

increased the dictionary size. 53

- Non alphanumeric characters were removed. 54

- All characters became lower case. 55

- Repeat instances of a word in a tag or body were removed, as there are no plans for 56

multinomial event modeling. 57

- Solely numeric words were removed (ex. cs229 still remains a valid word, but 2013 58

is pruned). 59

- Word stemming was applied when applicable. 60

- Stop words were pruned away from the title and body. 61

 62

To handle stemming and stop words, the Natural Language Toolkit (NLTK 3.0) for python 63

was used. Stop words provided through the NLTK libraries were used as a baseline, and 64

additional words were added to the list to handle word and symbol fragmentation due to the 65

initial parsing (ex. <p> is pruned away to p). 66

 67

Filter feature selection has the potential of greatly reducing the dictionary of unnecessary 68

words, as is easily applicable. For instance, in the set of 6 million training examples, there 69

are instances where words in the dictionary are not used more that 10-50 times. A 70

straightforward way to parse the dictionary would be to set a lower threshold in which the 71

occurrence of a word must exceed before being used as a feature. In depth analysis is 72

required to understand what a reasonable threshold would be. However, without filter feature 73

selection, using the title and body information, even with the pruning, will still produce a 74

dictionary that is too large to process. As such, two contours of the data will be explored: 75

one with no filter feature selection (dictionary size of 39965 for the 200k data set), and one 76

with a filter feature selection threshold of 25 (dictionary size of 20858 for the 200k data set). 77

 78

3 Naïve Bayes 79

Using NLTK 3.0 Naïve Bayes Classifier, with a 150k training set and 50k test set and no 80

filter feature selection, I obtained the following results for the top ten most used tags. 81

 82

Tag Positive

Examples

Negative

Examples

Accuracy Testing Time

(seconds)

c# 15438 184561 0.90368 3.778

java 13632 186367 0.94208 4.114

php 12938 187061 0.94372 3.651

javascript 12179 187820 0.92216 3.751

android 10622 189377 0.96922 3.972

jquery 9906 190093 0.94228 3.356

c++ 6716 193283 0.94550 3.992

python 6244 193755 0.97118 3.643

iphone 6107 193892 0.95984 3.968

asp.net 5835 194164 0.94828 3.890
Table 1 - Naive Bayes Baseline, no Filter Feature selection, 39965 dictionary size 83

The total training time for Naïve Bayes without filter feature selection is 91.642 seconds. 84

Note a separate model per tag was needed, as we cannot apply the discretized Naïve Bayes 85

algorithm in this instance. That is, the tags are not mutually exclusive; a t raining example 86

has the possibility of being tagged with multiple tags. A cursory glance at the results 87

suggests that naïve bayes is a good predictor even with only using the title as the dictionary 88

(and completely ignoring the body information). Below are the results after applying filter 89

feature selection (note that the number of positive and negative examples remains constant). 90

 91

Tag Accuracy Increase in

Accuracy (%)

Testing Time

(seconds)

Speed up (%)

c# 0.90792 0.4691926 3.835 -1.50873

java 0.94628 0.445822 3.783 8.045698

php 0.94768 0.419616 3.956 -8.35388

javascript 0.9269 0.5140106 4.202 -12.0235

android 0.97216 0.3033367 3.95 0.553877

jquery 0.947 0.5009127 4.216 -25.6257

c++ 0.9539 0.8884188 3.317 16.90882

python 0.97856 0.7599003 3.869 -6.20368

iphone 0.96634 0.6771962 3.735 5.871976

asp.net 0.9569 0.9090142 3.78 2.827763
Table 2 - Naive Bayes, Filter Feature Threshold 25, 20858 word dictionary 92

The total training time for Naïve Bayes with a filter feature selection threshold of 25 is 93

76.902 seconds. 94

 95

It is surprising to see that accuracy slightly increased with filter feature selection, which 96

implies the low frequency words did not have any prediction value (at least for the selected 97

tags) and noise was effectively removed by filter feature selection. As for testing time and 98

total training time, the timing methodology was to simply compute the execution time to call 99

the classification function of the Naïve Bayes Algorithm. Though the same machine was 100

used for all runs, not all transient variables were accounted for; as such, the compute time 101

comparisons serve only as a rough estimate. Therefore, between the two different Naïve 102

Bayes contours, their testing times were roughly equivalent, though the smaller dictionary in 103

the filtered Naïve Bayes run did produce a noticeably faster training time compared to the 104

baseline. 105

 106

4 SVM 107

Below are the results from the baseline SVM results with no filter feature selection. The 108

total training time for SVM with no filter feature selection was 680.23 seconds. The data is 109

compared against the Naïve Bayes baseline. 110

 111

Tag Accuracy Increase in

Accuracy (%)

Testing Time

(seconds)

Speed up (%)

c# 0.94236 4.2802762 0.117 3129.06

java 0.96638 2.5793988 0.105 3818.095

php 0.96886 2.6639257 0.104 3410.577

javascript 0.9622 4.3419797 0.134 2699.254

android 0.9862 1.7519242 0.1086 3557.459

jquery 0.97878 3.8735832 0.096 3395.833

c++ 0.97872 3.5134849 0.101 3852.475

python 0.98944 1.880187 0.099 3579.798

iphone 0.98394 2.5108351 0.106 3643.396

asp.net 0.98164 3.5179483 0.096 3952.083
Table 3- SVM baseline, no Filter Feature Selection, 39965 word dictionary 112

To perform SVM, the liblinear library was used (v1.93). This first involved converting the 113

python generated datasets into a Matlab friendly format, and then formatting the data into 114

sparse matrixes to pass into the train and predict functions. While the conversion to python 115

to matlab format is not counted against the training time for SVM, the creation of the sparse 116

matrixes is. As such, there is a dramatic increase in training time compared against the Naïve 117

Bayes baseline (almost 7 times as long), mainly due to the un-optimized generation of the 118

large sparse input matrixes. 119

 120

However, the testing times are orders of magnitude faster than that of Naïve Bayes. Granted, 121

some of the speed increases may be due to the nature of the python Naïve Bayes and C based 122

SVM implementations, but in general, the efficiency of SVM can clearly be seen in the 123

comparison. Extrapolate the results of the baseline algorithms to the full data set, assuming 124

Naïve Bayes’ average test time is 3.812 seconds and SVM’s average test time is 0.101 125

seconds, for 42000 separate tags/classifications, it would take Naïve Bayes roughly 2 days 126

(44.47 hours) to classify all tags while SVM would only take 70.7 minutes. Note that this is 127

only on 50000 test points too; for the full test set of 2 million data points, the actual testing 128

computation time may be drastically higher, so much so that Naïve Bayes is infeasible. As 129

such, for very large data sets, SVM is clearly the optimal solution, regardles s of its increased 130

training time. 131

 132

Filter feature selection was also performed for SVM. Below are the results. The comparisons 133

are against the SVM baseline. The total training time for filter feature selection with a 134

threshold of 25 is 622.3057 seconds. 135

 136

Tag Accuracy Increase in

Accuracy (%)

Testing Time

(seconds)

Speed up (%)

c# 0.9271 -1.6193387 0.1073 8.290598

java 0.93576 -3.1685258 0.0979 6.761905

php 0.94182 -2.7909089 0.099 4.807692

javascript 0.94336 -1.9580129 0.112 16.41791

android 0.9503 -3.6402352 0.1004 7.550645

jquery 0.95276 -2.6584115 0.0985 -2.60417

c++ 0.96764 -1.1320909 0.1084 -7.32673

python 0.96908 -2.0577296 0.1016 -2.62626

iphone 0.97236 -1.176901 0.0977 7.830189

asp.net 0.97194 -0.9881423 0.0981 -2.1875
Table 4-SVM, Filter Feature Threshold 25, 20858 word dictionary 137

As opposed to the Naïve Bayes results, the filter feature threshold of 25 word occurrences 138

caused a decrease in SVM’s accuracy compared against the SVM baseline. However, SVM 139

with filter feature selection is still more accurate that Naïve Bayes. The testing times roughly 140

stayed the same. As such, adding filter feature selection for SVM decreased the training time 141

by roughly 10%, but also decreased accuracy by roughly 2% overall. Given the situation and 142

circumstances, the drop in accuracy may be reasonable for the faster model generation. 143

 144

5 Future Improvements 145

The use of filter feature selection at a word frequency threshold of 25 reduced the dictionary 146

size roughly by half. However, a dictionary of 20858 words is still very large for a training 147

set of 150k examples. Also, as seen with filter feature selection on Naïve Bayes, a higher 148

threshold may still be used to further reduce the dictionary size without any negative impact 149

on accuracy. This implies that further reductions of the dictionary may be desired. To 150

achieve this, Principle Component Analysis seems like the best choice. Not only will this 151

remove the trial and error approach associated with guessing a proper threshold for filter 152

feature selection, but it will also remove frequent redundant features that will be ignored by 153

solely using filter feature selection. 154

 155

Another improvement would involve exploring ways to reduce the training time for the data 156

set. This is especially pertinent for SVM, as the creation of the sparse matrixes for liblinear 157

is a very time consuming process. Though this goes beyond the scope of this project, 158

exploring efficient sparse matrix generation algorithms is a practical consideration that is 159

definitely needed in real world usages of keyword extraction. 160

 161

6 Conclusion 162

Keyword extraction on large data sets introduces a large number of practical issues which 163

render certain machine learning algorithms more desirable than others. In particular, SVM is 164

seen as a much faster and feasible method of keyword extraction compared to Naïve Bayes. 165

However, this is only true for very large data sets, as the initial cost of training SVM is much 166

greater than that of Naïve Bayes. To reduce training times, various methods of pruning away 167

unnecessary information can be applied and formalized, such as filter feature selection and 168

PCA. As such, with a properly managed feature set and efficient algorithm, keyword 169

extraction can be performed accurately and within a reasonable amount of time and with 170

fairly inexpensive hardware. 171

 172

7 Citations 173

 174

Bird, Steven, Edward Loper, and Ewan Klein (2009). 175

Natural Language Processing with Python. O’Reilly Media Inc. 176

 177

R.-E. Fan, K.-W. Change, C.-J. Hsieh, C.-R. Wang, and C.-J. Lin. LIBLINEAR: A Library 178

for Large Linear Classification, Journal of Machine Learning Research 9(2008), 1871-1874. 179

Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear 180

 181

“Facebook Recruiting III – Keyword Extraction”. Kaggle (2013). Web. 182

http://www.kaggle.com/c/facebook-recruiting-iii-keyword-extraction 183

http://www.csie.ntu.edu.tw/~cjlin/liblinear

