
Building Fast Performance Models for x86 Code Sequences

Justin Womersley jwomers@stanford.edu

Stanford University, 450 Serra Mall, Stanford, CA 94305 USA

Christopher John Cullen cjc888@stanford.edu

Stanford University, 450 Serra Mall, Stanford, CA 94305 USA

1. Introduction

STOKE is an aggressive low level compiler which gen-
erates complex assembly level optimizations using ran-
dom search. Part of this process includes estimat-
ing the performance properties of short 64-bit x86 in-
struction sequences. In this project we aim to train
a machine learning model to more accurately esti-
mate the performance of these instruction sequences.
The predictor has to be as accurate as possible (given
that CISC architecture is extremely complex) while
also being able to sustain a throughput of 1M pre-
dictions/second to remain useful within STOKE opti-
mization process.

2. Background, Scope & Requirements

Current performance estimations for STOKE are sim-
ply a sum of average run times for each instruction.
This is fast, but not very accurate. On the other side
of the spectrum are cycle accurate simulators, which
give accurate preformance estimations but at the cost
of very long run times. Thus our goal is to achieve
an estimation model that is both more accurate
than the current sum-of-averages predictions while
also fast enough to be useable in the STOKE compiler.

To maintain feasibility, the scope of this project has
been limited to short code sequences of 20 instructions
or less. In addition, certain rare and more complex x86
instructions, like those including memory access, are
not required in the model, and thus not included in
the training or testing data sets.

3. Data & Features

Our data is in the form of short x86-64 loop-free code
sequences along with their known execution times. For
each sequence length of 1 to 16 instructions, we have
100,000 randomly generated sequences, each of which

has been executed 1,000,000 times in a loop to provide
an accurate estimate of average execution time. This
includes padding each sequence with 20 ”nop” instruc-
tions in an attempt to minimize more complex pipeline
and caching effects. This data is then stored as an xml
database with code sequence and execution time. Us-
ing the starter code from the x64asm tools, we created
a parser to read the xml entries and generate feature
vectors for the entire data set. This process is shown
in figure 1.

Figure 1. The process of extracting the opcode data into
a sparse opcode ID vector. Each sequence gets translated
into 3800 length vector, one entry for each opcode.

We then took a sample of 10% of the generated fea-
ture vectors (160,000 examples), and split that set into
90% training (144,000 examples) and 10% test (16,000
examples). Both training and testing sets were then
radomized to more realistically represent real world
data. Each of our chosen models were then trained
and evaluated in MatLab.

Top performing models were evaluated more thor-
oughly by partitioning the test set by sequence length
and testing the models on each partition. The best
performing model was implemented in C++ to mea-
sure the prediction runtime in order to validate our
throughput requirement. For a complete overview of
our data preperation, modeling and testing process see
figure 2.

Building Fast Performance Models for x86 Code Sequences

Figure 2. Process for generating, preparing, modeling and
testing on our data

4. Data Issues

4.1. Data Variability

Prior to defining features, we performed data analysis
on our generated data, examining means and variances
over the different sets. Execution times were mostly
linear with the number of instructions in the sequence,
but extreme outliers raised the mean of the dataset
to be non-representative of the true tendency of the
data. As seen in figure 3, the vast majority of exe-
cution times were in the sub-1,000,000 range, sloping
gradually above 1,000,000 for code sequences of length
> 10. An optimal predictor would need to be able
to accurately model both the lower execution times of
the bulk of the data and the higher (by an order of
magnitude) execution times of the minority outliers.
Figure 4 shows (with logarithmic y-axis) the distri-

Data # Opcode Registers Runtime

1-89832 sqrtpd %xmm15, %xmm13 219,647
1-17062 sqrtpd %xmm15, %xmm13 1,007,578
1-20519 sqrtpd %xmm15, %xmm13 6,994,932

Table 1. Three different run times for the same opcode and
register sets indicate the huge variance in our data due to
unmodeled effects. Note these runtimes were achieved with
only the 1 instruction pre-padded with 20 ”nop” instruc-
tions.

bution of execution times in sequences containing only
one instruction. 93.7% of sequences are < 250, 000 and
97.7% of sequences are < 500, 000, but one sequence
had a runtime of > 12, 000, 000. Thus the variability
of even the simplest of our data creates a difficult mod-
eling problem and any successful model would have to
accurately predict these outliers.

Figure 3. The distribution of runtimes for varying sequence
lengths. The vast majority of runtimes were ¡ 1,000,000
with a clear linear trend for these non-outliers. See figure 4
for a more accurate percentage breakdown or runtimes for
sequences of 1 instruction.

4.2. Unmodeled effects

Along with high variability seen within a minority of
code sequences of the same length, there were several
cases where high variability was seen within different
executions of the same sequence. Table 1 shows three
separate examples of the same code sequence, with
drastically different execution times. Whether due to
latent processor state or other factors that our data
do not capture, this discrepancy appears only as noise
in our data. Because of this, no predictor can (deter-

Building Fast Performance Models for x86 Code Sequences

Figure 4. Execution time for single instruction sequences -
note that almost 98% of the runtimes fall below 500,000.
The remaining 2% of outliers take on values of as much as
12,000,000.

ministically) perform perfectly on our data set. An
optimal predictor can only minimize error over osten-
sibly equivalent data.

5. Prediction Models

Feature Creation

Calculating runtime is at its most basic level a sum-
of-parts problem with the opcodes as the main con-
tributing factor. Thus our first step was to map our se-
quences to an opcode frequency feature matrix. Since
we had between 1 and 16 opcodes per sequence with
4000 opcodes, this produced a very sparse feature ma-
trix.

Linear Regression

Due to high throughput requirement, we could not use
any form of non-parametric algorithm as prediction
throughput with such algorithms would not be high
enough. Fortunately though, this strict speed require-
ment did not extend to training our model, allowing
us a larger breadth of training approaches and imple-
mentations in MatLab.

A linear regression with h(x) =
∑n

1 θixi = θTx using
the normal equations quickly ran into two issues: run-
ning out of memory for even moderate data sets, and
getting non-invertible matrices dues to the extreme
sparsity of our data set. Since our design matrix X
is a very sparse matrix, using the normal equations

was simply not feasible.

Modified Linear Regression

Using a stochastic gradient descent on our training set
achieved good results with a small training error. How-
ever the feature weights of θ often ended up negative
for opcodes that did not appear often in the train-
ing set. While this is mathematically valid - there
is no logical mapping for this to instruction runtime.
Since we know all instruction runtimes must be non-
negative, we amended the stochastic gradient descent
update step to reflect this prior knowledge to the fol-
lowing:

θj := max(0, θj + α(y(i) − hθ(x(i)))x(i)j)

which we will refer to as the θ-floor update. In addi-
tion, the outliers described in figure 3 often resulted in
large oscillations as theta was updated to reflect these
outliers. As a result we also reduced our learning rate
α to better cope with this. This change, in addition
to including our prior knowledge that θj ’s cannot be
negative, reduced the oscillating effect we encountered
when predictions are far from y(i) and resulted in no
negative feature weights for θ.

Outlier Exclusion

Since the the small minority of extreme outliers, in-
cluding known unmodeled effects described in table 1,
may impede the the regression to model the more lin-
ear sequences, another approach we took was to train
the regression model with a dataset that excluded any
extreme outliers. The aim was to better model the
vast majority of the data at the expense of badly pre-
dicting the < 10% of outliers and those with unmod-
eled effects. For each of the 1-16 training sequences
of 100,000 we removed 30% of training examples that
were lying furthest from the median and then imple-
mented the stochastic gradient descent using our θ-
floor update modification.

Additional Features

Lastly, to better predict the outliers we separated them
out and analyzed which, if any, opcodes and register
combinations resulted in these large runtimes. Once
we had a subset of 44 opcodes and 16 indicative reg-
isters, we added these additional 256 features (cross
product for register pairs of each of the 16 registers for
any of the 44 opcodes) to our sparse opcode feature
matrix in the hope of modelling these more complex
runtime results.

Building Fast Performance Models for x86 Code Sequences

6. Evaluation Metrics

The baseline benchmark against which we evaluated
our predictions was the runtime predictor that is cur-
rently being used in STOKE. This is a simple table
lookup using Agner Fog instruction tables [2] for the
Haswell architecture. To evaluate our models and pre-
dictions against this baseline benchmark we used two
different error metrics:

average error = εa =

∑m
i=1 | y(i) − h(x(i)) |

m

where m is the number of testing examples, y is the
actual runtime and h(x) is the predicted runtime using
our feature vector x.

threshold error = εt =

∑m
i=1 1{| y(i) − h(x(i)) |> δt}

m

where δt is an acceptable error margin, in our case
30% or 0.3. Since our extreme outliers could easily
skew the average error even in a reasonable good pre-
dictor, the threshold error would in this case represent
a more useful error metric as it reports the percentage
of predictions that were wrong.

To evaluate our timing requirement we developed our
final predictor in C++ and timed it making 100,000
predictions, ensuring that it met our throughput re-
quirement.

7. Results

7.1. Accuracy & Error Rates

Our best performing model was the modified linear re-
gression using θ-floor trained on our dataset that ex-
cluded the outliers - it was able to improve the average
error by 16% from the baseline benchmark, and im-
proved on the baseline’s threshold error by 29%, while
also maintaining the necessary throughput. Figure 7
shows the overall errors for our three top-performing
models, along with the baseline. Figure 5 and figure 6
show the results for each of our error metrics, parti-
tioned by sequence length.

Linear regression and θ-floor linear regression on Op-
code frequency were both outperformed by the base-
line overall, but had better error rates than the base-
line as sequence length increased. This suggests that
they are useful for predictive qualities on larger code
sequences. Linear regression with advanced features
such as register interaction modeling are not included
in these results because they performed worse than the

Figure 5. Average error for different models. The best per-
forming model (lowest error) was the linear regression with
the outliers removed during training.

Figure 6. Threshold error for different models. The best
performing model (lowest error) was the linear regression
with the outliers removed during training.

baseline in both metrics for all sequence lengths. Any
attemps we made to model the outliers using these
register features only worsened the predictive power
of our model. Linear regression on Opcode frequency
with outlier removal performed best overall, and out-
performed the other models in almost every metric.

7.2. Timing & Throughput

We implemented our final model as an iterative table-
lookup sum computation in C++, achieving an av-
erage throughput of 1.37M predictions per second on
code sequences of length 16. This throughtput meets
our throughout requirement. In addition, convert-
ing our final theta from floating point values to fixed
point values would increase the throughput even fur-
ther while having very little effect on prediction accu-

Building Fast Performance Models for x86 Code Sequences

Figure 7. Overall errors for our different models. Both the
standard linear regression and modified θ-floor regression
were not able to improve on the baseline benchmark per-
formance, while the modified regression trained on data
excluded the outliers outperformed all the other models
including the baseline benchmark.

racy.

8. Conclusion

Execution time prediction is a notoriously difficult
problem for any modern processor, but is especially
difficult for processors using the expansive x86-64 in-
struction set. We achieved our initial goal of im-
proving upon the baseline while maintaining neces-
sary throughput, lowering the average error rate by
16% and the threshold error rate by 29%. However,
it was frustrating that all attempts at feature gener-
ation for modeling the behavior of outliers performed
so poorly. Using features to represent specific opcodes
over certain register-pairs, we were able to model some
common causes of large execution time, but the inabil-
ity of those features to predict consistently had a net
negative effect on the model’s overall performance. In
addition, the unmodeled effects essentially impose an
upper-bound on any predictor without deeper informa-
tion about processor state during execution. Despite
the difficulties modeling the outliers in our data, the
improvement in error rates achieves our goal of de-
veloping a better performance model for loop-free x86
code sequences while maintaining the required predic-
tion throughput.

References

[1] Eric Schkufza, Rahul Sharma & Alex Aiken - Stochastic
Superoptimization. Stanford University

[2] Agner Fog. Technical University of Den-
mark. (2013) Instruction tables Lists of instruc-

tion latencies, throughputs and micro-operation
breakdowns for Intel, AMD and VIA CPUs.
http:www.agner.orgoptimizeinstruction tables.pdf
(12102013)

