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Abstract.  Deep Learning has got a lot of attention recently in the specialized machine learning community
and also in common media – the latter mainly due to research activities of large technology companies.  A
large part of that research  is applied to image classification tasks, and is based on techniques such as Deep
Belief  Networks  and  Convolutional  Neural  Networks.  Although  those  techniques  yield  state  of  the  art
results, they are known to be hard to tune and scale and, as of today, there is very few software packages
available to allow for a simple and quick implementation. In this report I will show an implementation of a
deep learning framework based on recent  research  [1],[3],  proposing K-Means  as  the  algorithm for  the
unsupervised  learning  step.  I  will  also show some techniques that allows for implementation of scalable
versions of  the proposed framework.

1. Introduction

The proposed framework will be implemented  in R  (The R Project for Statistical Computing) running on a
standard  Linux  desktop.  Specifically,  for  the  unsupervised  feature  learning  task,  I will  implement  the
Spherical K-Means algorithm in R, porting it from MATLAB code used in [1]. For the image classification task, I
will use an SVM implementation in R provided by [5].

To  test  the  implementation,  I  will  use   the  MNIST  dataset  [4].  The  goal  is  to  learn  a  new  feature
representation  for  the  images  that  is  suitable  for  a  linear  classification  task.  In  the  standard  pixel
representation a good classification is  possible,  but demands a much more complex non-linear classifier,
such as a deep neural network or an SVM with a non-linear kernel. A non-linear classifier turns out to be
harder to implement in a scalable way.

I will present this work as follows: In chapter 2 I depict an overview of the proposed architecture, showing its
main  processing  steps  and  how  they  are  composed  to  build  a  complete  deep  learning  framework¹.  In
chapter 3 I present results obtained by applying this framework for a handwritten digits classification task
using the MNIST data set. This data set was chosen due to its low dimensionality and large number of data
examples. Also, it is extensively used in image recognition benchmarks, which helps when comparing this
solution to alternatives. In chapter 4 I discuss possible implementations that allows this proposed framework
to scale and be suitable for very large datasets.  Finally,  in chapter 5 I  conclude this report  and suggest
further investigation.

2. Architecture Overview

The  architecture for the  proposed framework  is  shown in  Figure  1.  It is implemented  according to the
following steps:

1. Pre-processing of the data set:
Here we need to perform brightness and contrast normalization, as well as whitening, so that all the feature
remapping processing provide good results. I followed the corresponding procedures as described in [1].

2. Extracting random patches from the data set:
These patches, extracted from the original data set, are the input for the unsupervised learning procedure
(next step). Again, I followed  the suggestions presented in [1] and [3] for the necessary amount of patches
and the patch size. In my setup, I extracted 500,000 7x7 random patches from 60,000 28x28 images from
the training data set. Each one of those are an image of a handwritten digit (0 to 9).

¹ Due to lack of computational resources available, I implement only a single-layer of the framework



3. Learning a dictionary of features:
Here we perform the unsupervised learning step through K-Means, which attempts to learn a dictionary of
image features that will be further used to build a new representation from the original dataset. The setup
for  this  step  followed  the  suggestions  from  [1]  and  [3],  concerning  K-Means  implementation  (an
implementation known as  Spherical  K-Means in  this  case),  necessary number of  clusters  and processing
steps.  My initial intention was to use an of-the-shelf implementation of the  Spherical K-Means algorithm,
such as [6], but it turned out to demand too much memory, surpassing what I had available for the tests. So I
decided to port to R an implementation in MATLAB provided by [1],  which performed much better with
limited memory resources. For this setup I run it with 1,600 centroids. Figure 2 shows two learned feature
dictionaries. On the left, we see the dictionary learned without pre-processing of the data set. Clearly we see
that  it  fails  in  learning  good  “stokes”  representations  of  the  handwritten digits  and it  is  full  of  empty
clusters.  On  the  other  hand,  the  image  on  the  right  shows  another  dictionary,  now  learned  after
pre-processing of the data set as described earlier  and yielding much better results  much more similar to
actual pen strokes with clear edges.

4.  Mapping  the  original  features  (pixels)  of  the  dataset  into  a  new  feature  space,  which  is  a
function of the learned dictionary:
Now we compute a new feature representation of the original data set, which will hopefully turn it linearly
separable. As suggested in [1], I implemented the soft threshold encoding scheme for K-Means. In this step,
each original 28 x 28 pixel image, represented in a 1 x 784 vector, is now  encoded in a 1 x 6400 vector.

5. Optionally repeat steps 1 to 4, if more than one “layer” of feature representation is desirable:
In  this  experiment,  due  to  limited  computational  resources  available,  I  tested  only  a  new  feature
representation in one layer.

6.  Classify the  data set,  now represented in the new learned feature space,  using standard  linear
classification algorithms:
In  this  experiment,  I  tested  it  with  the  SVM  implementation  provided  by  [5].  I  performed  10-fold
cross-validation to choose the C parameter, which turned out to be C=50 the best choice.

Fig. 1: Overview of the proposed architecture for the framework implementation



Fig. 2: 1,600 centroids learned from 500,000 7x7 pixel patches. Left: no pre-processing; Right:
brightness and contrast normalization plus whitening

3. Tests and Results

The MNIST database of handwritten digits,  used to test this framework,  is composed by 60,000 labeled
training images and 10,000 labeled test images.  K-Means was tested using 500,000 7x7 patches extracted
from all available training data set. The encoding and classification steps used 30% of both training and test
sets, drawn randomly from their respective complete sets.

After running an SVM classifier using a standard linear kernel, I got the results depicted by the following
confusion matrix:

                                        true labels
                prediction   0   1   2   3   4   5   6   7   8   9
                         0 275   0   0   1   0   0   2   1   0   2
                         1   0 335   1   0   0   0   0   2   1   0
                         2   0   1 283   4   0   1   0   0   3   0
                         3   0   0   1 327   0   1   1   3   1   0
                         4   0   1   1   0 302   0   5   0   3   2
                         5   3   0   2   7   0 253   3   0   2   0
                         6   1   0   0   0   0   3 296   0   0   0
                         7   0   1   1   0   0   0   0 315   2   1
                         8   2   0   0   1   0   4   0   0 262   2
                         9   0   1   0   0   3   0   0   4   0 271

This result corresponds to a test error rate of 2.7% , which is better than all results published for 2 or 3-layer
neural  networks  trained  without  cross-entropy  loss  function  and  without  deskewing  pre-processing.  It
suggests that,  if  training the system with 100% of the  data set,  and applying deskewing to it,  it  could
improve significantly.

The complete source code in R is available in [7].



4. Scalable Implementations

The implementation presented here is suitable for running in a commodity desktop computer in relative few
time (few hours) for relative small dimensional data (1,000 to 3,000 pixels per image) and about 50,000 to
100,000 images. It was not possible, due to lack of enough computational resources, to apply this framework
to more complex images, such as those used in [8].

In that case, a scalable implementation would be necessary. A possible approach for implement one would
be to use a scale-out processing framework, such as Hadoop [9]. There are several ways to implement it on
top of Hadoop, all using the MapReduce [10] programming model. An option for such an implementation in
R would be to use the Hadoop Streaming framework, or several available products that allows for writing
map and Reduce function in R code.

There are several processing blocks that would benefit from the distributed, parallel processing of such an
implementation:

1.  Data  pre-processing:  for  both  brightness  and  contrast  normalization  as  well  as  whitening,  the
parallelization is straightforward. A Map-only Hadoop job can split the data matrix in several  chunks, each
chunk being processed independently and in parallel with each other.

2.  Patch  extraction:  this   is  also  straightforward.  Again,  a  Map-only  Hadoop  job  taking  care  of  several
independent chunks of the data matrix in parallel.

3.  K-Means  processing:  there  is  a  classic  and  also  straightforward  K-Means  algorithm  expressed  in
MapReduce: in the Map step, perform the centroid assignment to the data set. And in the Reduce step,
compute new centroids and check for convergence.

4.  Feature  encoding:  again,  an  straightforward  implementation  through  a  Map-only  job  that  processes
several chunks of the data matrix in parallel.

5. Liner classifier: an alternative to SVM which is easier to implement in MapReduce is Logistic Regression
through Gradient Descent. In this implementation, several partial gradients would be computed in parallel,
for independent chunks (mini-batch approach) of the data matrix. Then, a Reduce process would aggregate
those partial gradients for the updating of the parameters.

5. Conclusion and Further Work

In this work,  I've shown an working implementation,  in R,  of the framework proposed in [1]  and [3]  to
construct  a  deep  learning  architecture  for  classification.  As  future  work,  it  would  be  interesting  to
implement an scalable version to run on top of a Hadoop cluster that could be expanded to two or three
layers of features. Such a framework could then be applied for more complex image classification tasks, such
as [8]. 
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