
CS229 Final Project
Sentiment Analysis of Tweets: Baselines and Neural Network Models

Kai Sheng Tai
(advised by Richard Socher)

(Dated: December 13, 2013)

Social media sites such as Twitter are a rich source of text examples expressing positive and
negative sentiment. In this project, we investigate the classification accuracy achieved by a range
of learning algorithms on a Twitter sentiment dataset. We evaluate the performance of a neural
network classifier over bag-of-words features in relation to simpler linear classifiers.

This is a joint project with CS224N.

I. INTRODUCTION

The goal of sentiment analysis is to classify text sam-
ples according to their overall positivity or negativity.
We refer to the positivity or negativity of a text sample
as its polarity. In this project, we investigate three-class
sentiment classification of Twitter data where the labels
are “positive”, “negative”, and “neutral”.

We explore a number of questions in relation to the
sentiment analysis problem. First, we examine dataset
preprocessing specific to the natural language domain of
tweets. We then evaluate a number of baseline linear
models for sentiment analysis. Finally, we attempt to
improve on the performance of our baseline models us-
ing neural networks initialized with linear model weights.
All the algorithms we consider in this project are super-
vised methods over unigram and bigram features.

II. DATASET COLLECTION

We evaluate the performance of our classifiers on a test
set derived from two hand-labelled Twitter sentiment
datasets: (i) the SemEval 2013 Task 2 “B” dataset (7,458
examples) [10] , and (ii) the Sanders Analytics dataset of
product reviews on Twitter (3,220 examples) [11]. From
the combination of these two datasets, we hold out a test
set of 2,136 tweets. The class distribution in the test
set is 704 positive, 1116 neutral and 316 negative. The
remaining tweets from the combined dataset are used as
a training set, which we refer to as the “base” training
set.

To study the effect of additional training data on per-
formance, we create a second, “augmented” training set
by combining the base training set with labelled data
from both in-domain and out-of-domain sources:

• The Stanford Sentiment Treebank data (239,232
examples): a sentiment dataset consisting of snip-
pets from movie reviews [12]

• Tweets from news sources (21,479 examples) [13]

• Tweets from keyword search (52,738 examples) [14]

Honey Badger and Jordan Jefferson both got arrested
for pot possession for the 3rd time. He’s out for good

#fuckkkk #herbaddiction

Yay !!!!RT kellymonaco1: Excited to interview the new
cast of DWTS tonight for E News! They have no idea

what their in for ;)

I went to the Marijuana March, but I do not remember
what happened there.

FIG. 1: Sample tweets from base training set.

Protesters, anti-riot police in Egypt clash near a Cairo
university: http://t.co/ohvtgqIJrE -NS

BREAKING: US National Hurricane Center says
Tropical Storm Raymond has formed in Pacific south of

Mexico.

Oklahoma City Thunder will rebuild school basketball
courts in Moore, Okla., devastated by tornado:

http://t.co/cngFapdYtz -SS

FIG. 2: Sample tweets from news sources (labelled neutral).

In total, the augmented training set contains 332,669
examples. The first three datasets contain labelled posi-
tive, neutral and negative examples. We assign all exam-
ples drawn from news sources a neutral label. The tweets
retrieved from search queries with positive polarity are
labelled “positive”, and the tweets retrieved from search
queries with negative polarity are labelled “negative”.

III. PREPROCESSING

We first investigate the effect of various preprocess-
ing on classification accuracy. The baseline preproces-
sor strips all nonalphanumeric characters from the text.
We test the following additional preprocessing steps in
a cumulative fashion: (i) preserving punctuation sym-
bols, deduplicating and adding whitespace around punc-
tuation, (ii) preserving emoticons and adding whites-

2

RT @deaddollsclub: Things look seriously delicious
down here. #kimchi #amazing @GalbiBros

http://t.co/FcGQZiAExf

Tickets go on sale in 10 mins!!! HARDWELL
#fingerscrossed #awesome #needneedneed

http://t.co/jKzTRyeUry

im about to smash my phone up @MattyOTBC style
#Angry #needupgrade #pieceofshit

FIG. 3: Sample tweets from keyword search (labelled based
on polarity of search term).

train test change

base 82.6 70.8 0.0

+punct/special 82.7 71.6 +0.8

+emoticons 82.9 72.2 +0.6

+URLs 83.0 72.5 +0.3

+numbers 82.9 72.6 +0.1

TABLE I: Effect of preprocessing on classifier accuracy

pace around punctuation, (iii) replacing user references
with a generic token (@XYZ → 〈USER〉), (iv) replacing
URLs with a generic token, (v) replacing numbers with
a generic token, (vi) using stemmed tokens.

For each additional preprocessing step, a logistic re-
gression classifier (with regularization parameter C =
0.1) is trained on the bigram features derived from the
preprocessed text. The preprocessing steps that yielded
improvements on test accuracy are listed in Table I. User
reference replacement and stemming yielded lower test
set accuracies. The improvement realized by the emoti-
con handling step is reflective of the importance of emoti-
cons as lexical features in this domain. In the subsequent
analysis, we use the full set of preprocessing options that
yielded improvements in accuracy.

IV. MODEL EVALUATION

We use two performance metrics for model evaluation:
(i) the percentage of correctly-labelled examples, and (ii)
the average of the F1-scores for the positive and negative
classes, F = (Fpos + Fneg)/2, where as usual Fc is the
harmonic mean of the precision and recall for class c.
Note that even though this F1-score is only an average
of the F1-scores for the positive and negative classes, an
incorrect labelling of a neutral example will still hurt
the precision of the positive or negative class, and would
therefore impact the overall F1-score of the classifier.

V. BASELINE MODELS

A. Linear models

We set performance baselines using the following algo-
rithms: logistic regression (LogReg), Multinomial Naive
Bayes (MNB), Support Vector Machine (SVM) with the
linear kernel, and the Naive Bayes SVM (SVM) [1]. For
these algorithms, we let C ∈ R denote the inverse L2
regularization strength.

We now give a brief description of the Naive Bayes
SVM algorithm.

B. Naive Bayes SVM (NBSVM)

The Naive Bayes SVM is a simple but surprisingly ef-
fective method for text classification, achieving state-of-
the-art performance for a two-class sentiment classifica-
tion task on a large dataset of 50k IMDB movie reviews
[2] using only bigram features [1]. In [1], a version of the
NBSVM for two-class classification is described. Here
we give a natural generalization of the method to the
multiclass case (>− 3 classes).

Let f (i) ∈ {0, 1}|V | be the binary feature occurence
vector for the ith example, where V is the set of fea-
tures and f (i)

j = 1 iff feature Vj occurs in the exam-
ple. For each class c, define the count vector pc as
pc = α+

∑
i:y(i)=c f

(i), where α is the Laplace smoothing
parameter. For the MNB and NBSVM algorithms, we
take α = 1. For each class c, define the log-likelihood
ratio vector rc as:

rc = log
(

pc/‖pc‖1
1− pc/‖pc‖1

)
. (1)

For each class c, train a one-vs-rest linear SVM sc(x) =
wT
c x + bc on the set of feature vectors {f (i) ◦ rc}, where

wc is the weight vector for class c, bc is the bias term,
and ◦ denotes the elementwise product. Following [1],
we interpolate between MNB and SVM for each class:

w′
c = (1− β)w̄c + βwc, (2)
b′c = βbc (3)

where w̄c = ‖wc‖1/|V | is the mean magnitude of wc,
and β ∈ [0, 1]. Let s′c(x) = w′T

c x + b′c. Given ex-
ample x, the NBSVM classifier returns the prediction
ŷ = arg maxc{s′c(x)}. We also consider the possibility of
omitting the bias term by training SVMs that do not fit
an intercept; for this version of the NBSVM, omit the
terms bc and b′c in the above description.

In our experiments, we use β = 0.25.

3

+ = -

input

hidden

output

Random partition into feature groups

1 hidden unit
per class
per group

FIG. 4: Example neural network structure for 3 classes, 8
features and 2 feature groups per class. Bold nodes and con-
nections correspond to one feature group. Connections with
weights that are initialized to zero are omitted from the il-
lustration but are not constrained to remain at zero.

VI. NEURAL NETWORK MODELS WITH
LINEAR MODEL INITIALIZATION

A. Description

Neural networks initialized using weights derived from
linear models have been shown to exhibit good perfor-
mance on a variety of classification tasks, often improv-
ing on the linear model on which it is based [3]. Here we
give a description of this class of neural network models
which, in effect, act as meta-algorithms over their base
linear models.

1. Structure

Let n be the number of classes and let g ∈ [1, |V |] be
a parameter that denotes the number of feature groups
per class. The number of hidden units is given by the
product gn, and the number of output units is n. The
output of the network for an input x is:

s(x) = Wotanh(Whx + bh) + bo, (4)

where Wo is a n×gn matrix, Wh is a gn×|V | matrix, bo

is a vector of dimension n and bh is a vector of dimension
gc. s(x) is a vector of scores for each class for a given
example x. Let sc(x) denote the score assigned by the
network to class c for the example. The predicted class
ŷ is ŷ = arg maxc sc(x).

2. Initialization with linear model weights

Let {w1, . . . ,w|V |} be a set of weight vectors derived
from a linear model. Let {π(1), . . . , π(g)} be a random
partition of the set of feature indices {1, 2, . . . , |V |} into
g equally-sized groups.

The initialization scheme is illustrated in Fig. 4. For
each class c, associate g hidden units {h(c)

1 , . . . , h
(c)
g }. For

each i ∈ [1, g] and j ∈ [1, |π(i)|], the weight of the con-
nection between h

(c)
i and the input unit x

π
(i)
j

is given

by (wc)π(i)
j

. In other words, connect each input unit
to each of the n hidden units corresponding to its as-
signed feature group using the weight assigned by the
linear model. The remaining input-hidden weights are
initialized to zero.

The connection between each hidden unit and its cor-
responding output unit is initialized with weight 1/g.
The hidden biases bh are initialized with the the inter-
cept terms fit by the linear model divided by g (if the
linear model has no intercept terms, then this is initial-
ized to zero), and the output biases bo are initialized to
zero.

For logistic regression, SVM and NBSVM, the weights
are initialized using the raw linear model weights. For
MNB, we stack the weight vectors rc, then subtract the
mean and normalize by dividing by the component with
the largest absolute value.

In our experiments, we use g = 50.

B. Training

1. Gradient descent methods

The neural network is implemented using the Theano
library in Python [4]. Neural networks trained on the
base dataset are optimized using minibatch SGD (batch
size 50) with AdaGrad [5] and an initial learning rate
of 0.001. For networks trained on the much larger aug-
mented dataset of ∼ 300k examples, we use minibatch
SGD with a fixed learning rate of 0.01 in the interest of
computational speed.

We use the multiclass hinge loss as the cost function:

J(Wh,Wo,bh,bo) =
1
m

m∑
i=1

max
c

(1{y(i) 6= c}− (5)

sy(i)(x(i)) + sc(x(i))). (6)

Backpropagation training is performed for 10 epochs,
and the highest test accuracy over these epochs is re-
ported.

2. Feature dropout

Random feature “dropout” [6] during training has
yielded significant improvements in neural network per-
formance in several classification tasks by preventing
overfitting on groups of features. Though dropout train-
ing yields improvements for some text classification tasks
[3], for this sentiment classification problem we did not
observe any gains from input or hidden layer dropout
during training. The following results are derived from
networks trained without random feature dropout.

We conjecture that feature dropout does not help
much in this task since the feature representations of

4

base augmented

Method Accuracy F1 Accuracy F1

LogReg 71.11 57.57 73.13 63.32

MNB 68.12 47.72 66.20 58.06

SVM 70.65 54.55 73.17 61.25

NBSVM-0 66.76 59.07 63.20 54.69

NBSVM 66.95 59.57 58.90 54.84

NN-LogReg 70.27 57.51 72.14 62.58

NN-MNB 70.74 56.82 73.36 62.47

NN-SVM 70.83 60.02 72.05 62.22

NN-NBSVM 70.13 59.00 69.99 58.47

TABLE II: Results on Twitter sentiment test set. The top
result from each column is underlined, and the second-
highest result is in bold. All classifiers use bigram fea-
tures. LogReg: C = 1. SVM: C = 0.01. NBSVM:
C = 0.01, β = 0.25. NBSVM-0: NBSVM without intercept
fitting. NN: neural networks initialized with linear model
weights, using g = 50 feature groups per class. NN-LogReg:
C = 0.1 for LogReg classifier. NN-SVM: C = 0.1 for SVM
classifier. NN-NBSVM: C = 1.0, β = 0.25.

positive neutral negative accuracy (%)

positive 492 183 29 69.9

neutral 146 917 53 82.2

negative 42 121 153 48.4

TABLE III: Confusion matrix for logistic regression. Rows
are labeled with gold labels and columns are labeled with
predicted labels.

tweets are already extremely sparse in the feature space
induced by the very large augmented training set, so
that overfitting due to feature co-dependence is already
unlikely.

C. Results

The results of our experiments are listed in Table II.
After a few rounds of backpropagation training, the NNs
initialized with MNB and NBSVM weights achieve ac-
curacies that improve significantly on the accuracy of
the linear classifiers. Though a NN initialized with
NB weights and trained on the augmented training set
achieved the highest test accuracy, logistic regression still
achieved the highest F1 score. Our experiments indicate
that with proper tuning of the regularization parame-
ter, logistic regression offers a combination of speed and
good classification accuracy in this task when compared
to other classifiers using bigram features.

Tables III and IV show the confusion matrices for the
logistic regression and NN-MNB classifiers trained on the
augmented training set. We can see that the distribu-
tions of predicted labels are similar for the two models.
Notably, both models perform very poorly when classi-
fying “negative” examples, with a tendency to classify
them as “neutral”.

positive neutral negative accuracy (%)

positive 486 195 23 69.0

neutral 127 933 56 83.6

negative 43 132 141 44.6

TABLE IV: Confusion matrix for NN initialized with MNB
weights. Rows are labeled with gold labels and columns are
labeled with predicted labels.

VII. DISCUSSION

A. Limitations of bigram features

Bigram features fail to capture the sentiment ex-
pressed by semantic information in the text beyond
individual-word or individual-bigram polarities. For ex-
ample, both the logistic regression and NN-MNB mod-
els predict that the following example is “negative” (the
correct label is “positive”):

Idc if tomorrow decides to be a shitty day I’m
gonna make it the best goddamn day ever. #deter-
mined

The word “best” slightly biases this example towards
“positive” (both models assign “positive” a higher score
than “neutral”), but this is presumably outweighed by
the negative polarity of “shitty” and “goddamn”. The
key to this example is to recognize that the structure “[I
don’t care] if ...” negates the negativity of “shitty day”,
but neither model is able to take this information into
account.

An interesting path of further investigation would be
to assess the performance of compositional distributional
semantic models (CDSMs) [8, 9] on this dataset. These
models are able to capture compositional semantic phe-
nomena such as amplification, attenuation and negation
of sentiment due to modifying adjectives and adverbs.
We expect that these models should perform better on
hard cases such as the example given above.

B. Ambiguity of Aspect-Specific Examples

Our classifiers also have difficulty with examples that
express conflicting aspect-specific sentiment. For exam-
ple, the following example (again “positive” mislabelled
as “negative”) expresses conflicting sentiment regarding
PCs and Macs:

So, I am using my work PC (NEVER EVER) to
get a feel for it; it has the worst speakers ever!! apple
you have spoiled me!! #imamac

Both classifiers assign extremely high scores to the
“negative” class for this example and fail to recognize

5

the positivity expressed with respect to Apple products.
This is probably due to the ambiguity of “spoiled” and
the failure to understand the out-of-vocabulary token
“imamac” (a complex task that requires both morpho-
logical parsing and understanding of the expression “I’m
a Mac”).

Another misclassified example with conflicting aspect-
specific sentiment is the following:

Max might have to get put down tomorrow </3
absolutely heart breaking if I have to see my puppy
go. Love you Maxy x pic.twitter.com/lyHVHL1F

Here the confusion is due to the word “love”, which
has a positive polarity that should be negated by the
context.

C. Out-of-Domain Data Yields Improvements

Recall that we augmented our base training set of
tweets with ∼ 200k example from the Stanford Senti-
ment Treebank dataset. Even though this dataset was
derived from a corpus of movie reviews, its inclusion
in the training set still yielded improvements in clas-

sification accuracy on the test set. The improvement
is significant: a logistic regression classifier trained on
the augmented training set with treebank data excluded
achieves a test accuracy of 70.83%, while the test ac-
curacy achieved after training on the entire augmented
training set is 73.13% — an improvement of 2.3%. Train-
ing on the treebank data alone gives a test accuracy of
62.22%, so it is indeed the combination of the datasets
that yields the observed improvement.

VIII. CONCLUSIONS AND FURTHER WORK

We find that a complex neural network classifier
achieves only modest improvements over logistic regres-
sion and a linear SVM. With each tweet represented
as an extremely sparse feature vector, it appears to be
the case that neural network models are not well-suited
to classifying short text samples using bag-of-words fea-
tures.

A clear avenue for further investigation is to compare
the methods discussed in this project with the parse-tree-
based models described in [7], [8], and [9]. These models
should be better able to leverage semantic information
in classifying difficult cases such as those described in
Sec. VII A.

[1] S. Wang and C. D. Manning, in Proceedings of the
50th Annual Meeting of the Association for Computa-
tional Linguistics: Short Papers-Volume 2 (Association
for Computational Linguistics, 2012), pp. 90–94.

[2] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng,
and C. Potts, in Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Hu-
man Language Technologies-Volume 1 (Association for
Computational Linguistics, 2011), pp. 142–150.

[3] R. Socher, Naive neural networks for very fast and accu-
rate text classification, Private communication (2013).

[4] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pas-
canu, G. Desjardins, J. Turian, D. Warde-Farley, and
Y. Bengio, in Proceedings of the Python for Scientific
Computing Conference (SciPy) (2010), vol. 4.

[5] J. Duchi, E. Hazan, and Y. Singer, The Journal of Ma-
chine Learning Research 999999, 2121 (2011).

[6] G. E. Hinton, N. Srivastava, A. Krizhevsky,
I. Sutskever, and R. R. Salakhutdinov, arXiv preprint
arXiv:1207.0580 (2012).

[7] T. Nakagawa, K. Inui, and S. Kurohashi, in Human Lan-
guage Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Compu-
tational Linguistics (Association for Computational Lin-
guistics, 2010), pp. 786–794.

[8] R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and
C. D. Manning, in Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing (Associ-
ation for Computational Linguistics, 2011), pp. 151–161.

[9] R. Socher, A. Perelygin, J. Y. Wu, J. Chuang, C. D.
Manning, A. Y. Ng, and C. Potts (EMNLP, 2013).

[10] http://www.cs.york.ac.uk/semeval-2013/task2/
[11] http://www.sananalytics.com/lab/twitter-sentiment/
[12] http://nlp.stanford.edu/sentiment/treebank.html
[13] From the following sources: AP, BBCTech, BBCWorld,

ReutersBiz, ReutersLegal, ReutersScience, ReutersS-
ports, ftfinancenews, nytimes, nytimestech.

[14] From search queries for pre-selected keywords with pos-
itive and negative polarity.

	Introduction
	Dataset collection
	Preprocessing
	Model evaluation
	Baseline models
	Linear models
	Naive Bayes SVM (NBSVM)

	Neural network models with linear model initialization
	Description
	Structure
	Initialization with linear model weights

	Training
	Gradient descent methods
	Feature dropout

	Results

	Discussion
	Limitations of bigram features
	Ambiguity of Aspect-Specific Examples
	Out-of-Domain Data Yields Improvements

	Conclusions and Further work
	References

