Social media sites such as Twitter are a rich source of text examples expressing positive and negative sentiment. In this project, we investigate the classification accuracy achieved by a range of learning algorithms on a Twitter sentiment dataset. We evaluate the performance of a neural network classifier over bag-of-words features in relation to simpler linear classifiers.

I. INTRODUCTION

The goal of sentiment analysis is to classify text samples according to their overall positivity or negativity. We refer to the positivity or negativity of a text sample as its polarity. In this project, we investigate three-class sentiment classification of Twitter data where the labels are “positive”, “negative”, and “neutral”.

We explore a number of questions in relation to the sentiment analysis problem. First, we examine dataset preprocessing specific to the natural language domain of tweets. We then evaluate a number of baseline linear models for sentiment analysis. Finally, we attempt to improve on the performance of our baseline models using neural networks initialized with linear model weights. All the algorithms we consider in this project are supervised methods over unigram and bigram features.

II. DATASET COLLECTION

We evaluate the performance of our classifiers on a test set derived from two hand-labelled Twitter sentiment datasets: (i) the SemEval 2013 Task 2 “B” dataset (7,458 examples) [10], and (ii) the Sanders Analytics dataset of product reviews on Twitter (3,220 examples) [11]. From the combination of these two datasets, we hold out a test set of 2,136 tweets. The class distribution in the test set is 704 positive, 1116 neutral and 316 negative. The remaining tweets from the combined dataset are used as a training set, which we refer to as the “base” training set.

To study the effect of additional training data on performance, we create a second, “augmented” training set by combining the base training set with labelled data from both in-domain and out-of-domain sources:

- The Stanford Sentiment Treebank data (239,232 examples): a sentiment dataset consisting of snippets from movie reviews [12]
- Tweets from news sources (21,479 examples) [13]
- Tweets from keyword search (52,738 examples) [14]

In total, the augmented training set contains 332,669 examples. The first three datasets contain labelled positive, neutral and negative examples. We assign all examples drawn from news sources a neutral label. The tweets retrieved from search queries with positive polarity are labelled “positive”, and the tweets retrieved from search queries with negative polarity are labelled “negative”.

III. PREPROCESSING

We first investigate the effect of various preprocessing on classification accuracy. The baseline preprocessor strips all nonalphanumeric characters from the text. We test the following additional preprocessing steps in a cumulative fashion: (i) preserving punctuation symbols, deduplicating and adding whitespace around punctuation, (ii) preserving emoticons and adding whites-
pace around punctuation, (iii) replacing user references with a generic token (@XYZ → ⟨USER⟩), (iv) replacing URLs with a generic token, (v) replacing numbers with a generic token, (vi) using stemmed tokens.

For each additional preprocessing step, a logistic regression classifier (with regularization parameter C) is trained on the bigram features derived from the preprocessed text. The preprocessing steps that yielded improvements on test accuracy are listed in Table I. User reference replacement and stemming yielded lower test accuracies. The improvement realized by the emoticon handling step is reflective of the importance of emoticons as lexical features in this domain. In the subsequent analysis, we use the full set of preprocessing options that cons as lexical features in this domain. In the subsequent analysis, we use the full set of preprocessing options that

<table>
<thead>
<tr>
<th></th>
<th>train</th>
<th>test</th>
<th>change</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>82.6</td>
<td>70.8</td>
<td>0.0</td>
</tr>
<tr>
<td>+punct/special</td>
<td>82.7</td>
<td>71.6</td>
<td>+0.8</td>
</tr>
<tr>
<td>+emoticons</td>
<td>82.9</td>
<td>72.2</td>
<td>+0.6</td>
</tr>
<tr>
<td>+URLs</td>
<td>83.0</td>
<td>72.5</td>
<td>+0.3</td>
</tr>
<tr>
<td>+numbers</td>
<td>82.9</td>
<td>72.6</td>
<td>+0.1</td>
</tr>
</tbody>
</table>

TABLE I: Effect of preprocessing on classifier accuracy

We set performance baselines using the following algorithms: logistic regression (LogReg), Multinomial Naive Bayes (MNB), Support Vector Machine (SVM) with the linear kernel, and the Naive Bayes SVM (SVM) [1]. For these algorithms, we let $C ∈ ℝ$ denote the inverse $L2$ regularization strength.

We now give a brief description of the Naive Bayes SVM algorithm.

B. Naive Bayes SVM (NBSVM)

The Naive Bayes SVM is a simple but surprisingly effective method for text classification, achieving state-of-the-art performance for a two-class sentiment classification task on a large dataset of 50k IMDB movie reviews [2] using only bigram features [1]. In [1], a version of the NBSVM for two-class classification is described. Here we give a natural generalization of the method to the multiclass case ($≥ 3$ classes).

Let $f^{(i)} ∈ \{0, 1\}^{|V|}$ be the binary feature occurrence vector for the ith example, where V is the set of features and $f^{(i)}_j = 1$ iff feature V_j occurs in the example. For each class c, define the count vector p_c as $p_c = α + ∑_i β^{(i)}_c f^{(i)}$, where $α$ is the Laplace smoothing parameter. For the MNB and NBSVM algorithms, we take $α = 1$. For each class c, define the log-likelihood ratio vector r_c as:

$$ r_c = \log \left(\frac{p_c/\|p_c\|_1}{1 - p_c/\|p_c\|_1} \right). $$

(1)

For each class c, train a one-vs-rest linear SVM $s_c(x) = w_c^T x + b_c$ on the set of feature vectors $\{f^{(i)}_c \circ r_c\}$, where w_c is the weight vector for class c, b_c is the bias term, and \circ denotes the elementwise product. Following [1], we interpolate between MNB and SVM for each class:

$$ w'_c = (1 - β)\overline{w}_c + βw_c, $$

$$ b'_c = βb_c $$

(2)

(3)

where $\overline{w}_c = \|w_c\|_1/|V|$ is the mean magnitude of w_c, and $β ∈ [0, 1]$. Let $s'_c(x) = w'_c^T x + b'_c$. Given example x, the NBSVM classifier returns the prediction $\hat{y} = \arg\max_c \{s'_c(x)\}$. We also consider the possibility of omitting the bias term by training SVMs that do not fit an intercept; for this version of the NBSVM, omit the terms b_c and b'_c in the above description.

In our experiments, we use $β = 0.25$.

V. BASELINE MODELS

A. Linear models

We use two performance metrics for model evaluation: (i) the percentage of correctly-labelled examples, and (ii) the average of the F1-scores for the positive and negative classes, $F = (F_{pos} + F_{neg})/2$, where as usual F_c is the harmonic mean of the precision and recall for class c. Note that even though this F1-score is only an average of the F1-scores for the positive and negative classes, an incorrect labelling of a neutral example will still hurt the precision of the positive or negative class, and would therefore impact the overall F1-score of the classifier.

FIG. 3: Sample tweets from keyword search (labelled based on polarity of search term).
VI. NEURAL NETWORK MODELS WITH LINEAR MODEL INITIALIZATION

A. Description

Neural networks initialized using weights derived from linear models have been shown to exhibit good performance on a variety of classification tasks, often improving on the linear model on which it is based [3]. Here we give a description of this class of neural network models which, in effect, act as meta-algorithms over their base linear models.

1. Structure

Let \(n \) be the number of classes and let \(g \in [1, |V|] \) be a parameter that denotes the number of feature groups per class. The number of hidden units is given by the product \(gn \), and the number of output units is \(n \). The output of the network for an input \(x \) is:

\[
s(x) = W_o \tanh(W_h x + b_h) + b_o,
\]

where \(W_o \) is a \(n \times gn \) matrix, \(W_h \) is a \(gn \times |V| \) matrix, \(b_o \) is a vector of dimension \(n \) and \(b_h \) is a vector of dimension \(gc \). \(s(x) \) is a vector of scores for each class for a given example \(x \). Let \(s_c(x) \) denote the score assigned by the network to class \(c \) for the example. The predicted class \(\hat{y} \) is \(\hat{y} = \arg \max_c s_c(x) \).

2. Initialization with linear model weights

Let \(\{w_1, \ldots, w_{|V|}\} \) be a set of weight vectors derived from a linear model. Let \(\{\pi^{(1)}, \ldots, \pi^{(g)}\} \) be a random partition of the set of feature indices \(\{1, 2, \ldots, |V|\} \) into \(g \) equally-sized groups.

The initialization scheme is illustrated in Fig. 4. For each class \(c \), associate \(g \) hidden units \(\{h_1^{(c)}, \ldots, h_g^{(c)}\} \). For each \(i \in [1, g] \) and \(j \in [1, |\pi^{(i)}|] \), the weight of the connection between \(h_i^{(c)} \) and the input unit \(x_{\pi^{(i)}_j} \) is given by \((w_c)_{\pi^{(i)}_j} \). In other words, connect each input unit to each of the \(n \) hidden units corresponding to its assigned feature group using the weight assigned by the linear model. The remaining input-hidden weights are initialized to zero.

The connection between each hidden unit and its corresponding output unit is initialized with weight \(1/g \). The hidden biases \(b_h \) are initialized with the intercept terms fit by the linear model divided by \(g \) (if the linear model has no intercept terms, then this is initialized to zero), and the output biases \(b_o \) are initialized to zero.

For logistic regression, SVM and NBSVM, the weights are initialized using the raw linear model weights. For MNB, we stack the weight vectors \(r_c \), then subtract the mean and normalize by dividing by the component with the largest absolute value.

In our experiments, we use \(g = 50 \).

B. Training

1. Gradient descent methods

The neural network is implemented using the Theano library in Python [4]. Neural networks trained on the base dataset are optimized using minibatch SGD (batch size 50) with AdaGrad [5] and an initial learning rate of 0.001. For networks trained on the much larger augmented dataset of \(\sim 300k \) examples, we use minibatch SGD with a fixed learning rate of 0.01 in the interest of computational speed.

We use the multiclass hinge loss as the cost function:

\[
J(W_h, W_o, b_h, b_o) = \frac{1}{m} \sum_{i=1}^{m} \max(1\{y^{(i)} \neq c\} - s_{y^{(i)}}(x^{(i)}) + s_c(x^{(i)})),
\]

Backpropagation training is performed for 10 epochs, and the highest test accuracy over these epochs is reported.

2. Feature dropout

Random feature “dropout” [6] during training has yielded significant improvements in neural network performance in several classification tasks by preventing overfitting on groups of features. Though dropout training yields improvements for some text classification tasks [3], for this sentiment classification problem we did not observe any gains from input or hidden layer dropout during training. The following results are derived from networks trained without random feature dropout.

We conjecture that feature dropout does not help much in this task since the feature representations of
Methodology

TABLE II: Results on Twitter sentiment test set. The top result from each column is underlined, and the second-highest result is in bold.

<table>
<thead>
<tr>
<th>Method</th>
<th>base Accuracy</th>
<th>base F1</th>
<th>augmented Accuracy</th>
<th>augmented F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogReg</td>
<td>71.11</td>
<td>57.57</td>
<td>73.13</td>
<td>63.32</td>
</tr>
<tr>
<td>MNB</td>
<td>68.12</td>
<td>47.72</td>
<td>66.20</td>
<td>58.06</td>
</tr>
<tr>
<td>SVM</td>
<td>70.65</td>
<td>54.55</td>
<td>73.17</td>
<td>61.25</td>
</tr>
<tr>
<td>NBSVM-0</td>
<td>66.76</td>
<td>59.07</td>
<td>63.20</td>
<td>54.69</td>
</tr>
<tr>
<td>NBSVM</td>
<td>66.95</td>
<td>59.57</td>
<td>58.90</td>
<td>54.84</td>
</tr>
<tr>
<td>NN-LogReg</td>
<td>70.27</td>
<td>57.51</td>
<td>72.14</td>
<td>62.58</td>
</tr>
<tr>
<td>NN-MNB</td>
<td>70.74</td>
<td>56.82</td>
<td>73.36</td>
<td>62.47</td>
</tr>
<tr>
<td>NN-SVM</td>
<td>70.83</td>
<td>60.02</td>
<td>72.05</td>
<td>62.22</td>
</tr>
<tr>
<td>NN-NBSVM</td>
<td>70.13</td>
<td>59.00</td>
<td>69.99</td>
<td>58.47</td>
</tr>
</tbody>
</table>

TABLE III: Confusion matrix for logistic regression. Rows are labeled with gold labels and columns are labeled with predicted labels.

<table>
<thead>
<tr>
<th></th>
<th>positive</th>
<th>neutral</th>
<th>negative</th>
<th>accuracy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>positive</td>
<td>492</td>
<td>183</td>
<td>29</td>
<td>69.9</td>
</tr>
<tr>
<td>neutral</td>
<td>146</td>
<td>917</td>
<td>53</td>
<td>82.2</td>
</tr>
<tr>
<td>negative</td>
<td>42</td>
<td>121</td>
<td>153</td>
<td>48.4</td>
</tr>
</tbody>
</table>

VII. DISCUSSION

A. Limitations of bigram features

Bigram features fail to capture the sentiment expressed by semantic information in the text beyond individual-word or individual-bigram polarities. For example, both the logistic regression and NN-MNB models predict that the following example is “negative” (the correct label is “positive”):

```
Idc if tomorrow decides to be a shitty day I’m gonna make it the best goddamn day ever. #determined
```

The word “best” slightly biases this example towards “positive” (both models assign “positive” a higher score than “neutral”), but this is presumably outweighed by the negative polarity of “shitty” and “goddamn”. The key to this example is to recognize that the structure “[I don’t care] if ...” negates the negativity of “shitty day”, but neither model is able to take this information into account.

An interesting path of further investigation would be to assess the performance of compositional distributional semantic models (CDSMs) on this dataset. These models are able to capture compositional semantic phenomena such as amplification, attenuation and negation of sentiment due to modifying adjectives and adverbs. We expect that these models should perform better on hard cases such as the example given above.

B. Ambiguity of Aspect-Specific Examples

Our classifiers also have difficulty with examples that express conflicting aspect-specific sentiment. For example, the following example (again “positive” mislabelled as “negative”) expresses conflicting sentiment regarding PCs and Macs:

```
So, I am using my work PC (NEVER EVER) to get a feel for it; it has the worst speakers ever!! apple you have spoiled me!! #imamac
```

Both classifiers assign extremely high scores to the “negative” class for this example and fail to recognize
the positivity expressed with respect to Apple products. This is probably due to the ambiguity of “spoiled” and the failure to understand the out-of-vocabulary token “imamac” (a complex task that requires both morphological parsing and understanding of the expression “I’m a Mac”).

Another misclassified example with conflicting aspect-specific sentiment is the following:

Max might have to get put down tomorrow <3 absolutely heart breaking if I have to see my puppy go. Love you Maxy x pic.twitter.com/lyHVHL1F

Here the confusion is due to the word “love”, which has a positive polarity that should be negated by the context.

C. Out-of-Domain Data Yields Improvements

Recall that we augmented our base training set of tweets with ~ 200k example from the Stanford Sentiment Treebank dataset. Even though this dataset was derived from a corpus of movie reviews, its inclusion in the training set still yielded improvements in classification accuracy on the test set. The improvement is significant: a logistic regression classifier trained on the augmented training set with treebank data excluded achieves a test accuracy of 70.83%, while the test accuracy achieved after training on the entire augmented training set is 73.13% — an improvement of 2.3%. Training on the treebank data alone gives a test accuracy of 62.22%, so it is indeed the combination of the datasets that yields the observed improvement.

VIII. CONCLUSIONS AND FURTHER WORK

We find that a complex neural network classifier achieves only modest improvements over logistic regression and a linear SVM. With each tweet represented as an extremely sparse feature vector, it appears to be the case that neural network models are not well-suited to classifying short text samples using bag-of-words features.

A clear avenue for further investigation is to compare the methods discussed in this project with the parse-tree-based models described in [7], [8], and [9]. These models should be better able to leverage semantic information in classifying difficult cases such as those described in Sec. VII A.

[14] From search queries for pre-selected keywords with positive and negative polarity.