
Attribution of Musical Works to Josquin des Prez

Philip Lee
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

Kate Stuckman
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

Zachary Sunberg
Department of Aeronautics and Astronautics

Stanford University
Stanford, CA 94305

Abstract—Josquin des Prez was one of the most important
composers of the middle renaissance era. However, there is dis-
agreement in the academic community about what musical pieces
should be attributed to him. The project described here uses a
machine learning approach to classify dubiously attributed works
to Josquin or his near contemporaries. Using features known as
counterpoint modules, we were able to build supervised learning
models from a training set of known music. We attempted both
multi-class (classifying all composers) and binary (Josquin or not
Josquin) classification. The best multi-class model had a cross-
validation accuracy of 81%. The best binary classifier had an
Area Under the ROC Curve of .8707 and an accuracy of 84%.
Using this model, we predict that between 90 and 130 of our test
set of 285 questionable works were actually written by Josquin.

I. INTRODUCTION

Josquin des Prez was a renaissance composer of the 15th
and early 16th centuries. He is considered one of the greatest
composers of the era. However, his fame caused his name to
become attached to many musical pieces from that period, and
there is disagreement in the music community regarding which
historical pieces should actually be attributed to him. Working
in conjunction with Professors Jesse Rodin and Craig Sapp
of the Josquin Research Project, we analyzed songs from the
renaissance for which there is scholarly consensus regarding
whether or not they were actually composed by Josquin [1].
This comprised our training set. Using this data, we built a
machine learning model to classify borderline cases.

II. DATA

We used data collected by the Josquin Research Project
at the Stanford Center for Computer Assisted Research in the
Humanities (CCARH). The research group has been collecting
and manually digitizing music from Josquin and several of his
contemporaries from the renaissance. Typically, these songs
are choral music with four voices in a song. The digital
files include information from historical scores from these
composers (including each voice, notes, rhythms, and pitch)
and are available in many formats, including a Matlab-friendly
matrix. The research team has also developed tools to easily
query for features in the music that may be useful in attributing
the works, such as note patterns, specific rhythms, and chord
progressions.

Of specific interest is a group of music traditionally at-
tributed to Josquin, but determined by field experts to be of
questionable origin (due to conflicting sources, a dearth of
sources, and/or differing musical styles). We built a machine
learning model that performs well on the music with confident
labels (the training set) to make predictions on this question-
able group of music (the test set).

III. METHOD

We first began this supervised learning problem as a multi-
class classification problem. We extracted several features
deemed interesting by researchers Rodin and Sapp (described
below) and applied the features to several machine learn-
ing models (such as Naive Bayes, Support Vector Machines
(SVM), and classification trees) separately to try to classify
which renaissance composer was responsible for each piece of
music. We used the results from these multi-class classifiers
to select relevant features. We then generalized these models
to our primary problem: binary classification (Josquin vs. not
Josquin). Finally, we combined the binary classification models
using an ensemble method. Our feature extraction, feature
selection, and models were implemented in Matlab.

IV. FEATURES

The data available for our use in classification were digital
representations of scores, including information such as note
pitch and timing. We tried a variety of features with varying
levels of complexity to differentiate between authors.

A. Simple Pitch Intervals

The first pass of analysis relied simply on creating his-
tograms of the pitch intervals between adjacent notes in the
same part. Each feature is the number of times that a given
pitch interval occurs in the song.

B. Counterpoint Modules

The concept of counterpoint is an important tool for the
analysis of music from Josquin’s period [3], [4]. Counterpoint
modules are features that compactly capture information about
how a composer uses pitch transitions, and were recommended
by our music faculty advisers. A counterpoint module can be
described by three pitch intervals, and is made up of data
from two of the musical parts. For example, consider part A
with temporally adjacent notes (A, 1) and (A, 2) and part B
with notes (B, 1) and (B, 2) that begin at the same time as
(A, 1) and (A, 2) respectively. The counterpoint module for
these notes consists of the intervals between notes (A, 1) and
(B, 1), (B, 1) and (B, 2), and (A, 1). Figure 1 shows a single
counterpoint module. Each feature is the number of times a
counterpoint triplet appears in a musical work.

C. Dissonance

The use of dissonance was emerging in Josquin’s time,
so the use of dissonant chords was changing in this time
period. Dissonance in the renaissance era is defined as 2nds,



Fig. 1. A counterpoint module

6th, and in rare cases 4ths from the lowest note. Analysis
here involved creating a histogram of these chords specifically
across different voice parts.

D. Rhythms

Rhythmic patterns in a single measure can be analysed
for each voice part. This can be quantified as a binary value,
with each bit representing whether this beat contained a note
attack. A histogram of the distribution of the combinations of
rhythms can be extracted. This method required time signature
information in the data files, so the data format for each score
provided by the Josquin Research Project was altered before
analysis of this feature was completed.

V. MACHINE LEARNING APPROACH

We applied several machine learning models to fit our
problem. We began with a Naive Bayes approach (with Laplace
Smoothing). We then used the libsvm package to utilize Sup-
port Vector Machines [2] and built in Matlab functions to train
models using classification trees. We then took the probability
outputs of these models and used a RobustBoost ensemble
learner to combine the models appropriately. Additionally, we
performed feature selection and Principal Component Analysis
(PCA) to reduce the dimensionality of our features.

A. Model Choices

We chose these models based on how well we thought they
would apply to the problem, resources available to us, ease of
implementation, and how well they would fit into our ensemble
framework. Naive Bayes was a model that seemed suited for
our primary features (counting occurrences of counterpoints).
The classification trees were utilized mostly due to ease of
implementation. The RobustBoost algorithm was chosen for
our ensemble learner because our data was fairly skewed. Of
our training samples, less than 30% were written by Josquin.

B. Feature Reduction

The cardinality of the set of all features present in the
training set is much larger than the number of training ex-
amples. Table I below illustrates the dimensions of each of
our features. We believe that this caused nonlinear classifiers
such as Gaussian kernel SVMs to over-fit. In order to mitigate
this problem, we attempted to reduce the dimensionality of the

Dimensionality of Features
Pitch Intervals 80
Counterpoints O(153)
Rhythms 212
Dissonance 3

TABLE I. DIMENSIONS OF EACH FEATURE

feature space by using greedy forward search feature selection
and PCA. The forward search feature selection proved to be
very inconvenient in terms of computational time, and did not
lead to improvements in initial tests, so it was abandoned. After
experimenting with different numbers of principal components
used, we used the components that accounted for 99% of the
variance in the original data. This resulted in a feature space
with a dimension that was slightly lower than the number
of training examples. Use of PCA significantly improved our
computational time, however it did not significantly reduce the
generalization error estimated using cross-validation, and we
remain suspicious of over-fitting.

VI. EVALUATION METRICS

Because we have a limited data size (443 total songs),
we used cross- validation to measure the accuracy of our
models. We relied on mostly 10-fold cross validation to judge
our progress. For multi-class classification, we used cross-
validation accuracy (sum of the diagonals in the confusion
matrix divided by the total number of songs) as an estimate
of one minus the generalization error. For binary classifica-
tion models, we looked to maximize cross-validated Receiver
Operating Characteristic (ROC) and the corresponding Area
Under Curve (AUC) before attempting to classify the disputed
cases.

VII. RESULTS

A. Multi-Class Classification

The results of various tests are shown below to illustrate
the performance of our multi-class classification models. Fig-
ures 2-4 show the results of ten-fold cross-validation testing
with various sets of features and machine learning approaches.
Each graph shows all of the information from the confusion
matrix. The labels below the bars show the actual known
composer of the pieces in the bars above, and the size of the
bars represent the number of pieces by that composer that were
classified to belong to each composer. Perfect classification
would leave only the single bar corresponding to that composer
above each composer’s name.

Through experimentation, we found that the counterpoint
features were the most predictive of composers. Adding other
features did not significantly improve our results. We give a
sample of the results from different sets of features below.

Figure 2 shows the poor results produced by using only
pitch intervals with a multinomial naive Bayes classifier;
figure 3 shows the greatly improved results using counterpoint
features; and figure 4 shows the results using a Gaussian
kernel SVM. Even after reducing the dimensionality of the
feature space using PCA, naive Bayes produces a slightly
lower estimated generalization error than the SVM. We believe
that this could be due to over-fitting by the SVM.



Fig. 2. Cross-validation classification using a naive Bayes classifier with
pitch interval features. Accuracy: 50%

Fig. 3. Cross-validation classification using a naive Bayes classifier with
counterpoint features. Accuracy: 81%

B. Binary Classification

Our binary classification model results are displayed and
discussed in this section. Using 10-fold accuracy predictions,
we plotted ROC curves for each of our binary classification
models in Figures 5-8 below. The features of these models
were counterpoint modules (using PCA where appropriate).

The classification trees in figure 5 performed the worst for
our task by a large margin. The AUC of the trees (.6) was only
slightly above random and significantly lower than the AUC
of the other models. The Naive Bayes model and Gaussian-
kernel SVM performed very similarly (AUC of .867 and .861
respectively). The results are close enough that the difference

Fig. 4. Cross-validation classification using a Gaussian kernel SVM classifier
with a PCA-reduced set of counterpoint features. Accuracy: 79%

Fig. 5. Cross-validation ROC using classification trees with a PCA-reduced
set of features. AUC: .598

in performance may be due to our selection of the cross-
validation folds. Our ensemble method, with an AUC of .848,
did not perform as well as the SVM or Naive Bayes model. We
hypothesize that the difference in performance may be due our
training methodology. Training a meta-learner requires data for
training, meta-training, and testing. Because we have a limited
sample of observations, each step in the meta-learner was able
to train on less data than the individual models, providing a
less accurate model. Thus, a direct comparison between the
ensemble learner and the other models may not be entirely
applicable. A summary of AUC values for our various binary
classification models is presented below in Table II.

C. Classification on Unknown Data

Finally, we present the predictions of our models on
the testing set. Figure 9 shows the number of pieces with



Fig. 6. Cross-validation ROC using Naive Bayes. AUC: .867

Fig. 7. Cross-validation ROC using a Gaussian Kernel SVM with a PCA-
reduced set of features. AUC: .861

Fig. 8. Cross-validation ROC using a RobustBoost Ensemble Learner. AUC:
.848

Learning Approach Area Under Curve
Trees .598
Naive Bayes .867
SVM .861
Ensemble .848

TABLE II. BINARY CLASSIFIER PERFORMANCE COMPARISON

Fig. 9. Final classification of works with questionable attribution

questionable attribution that should be attributed to Josquin
according to our classifiers. All three classifiers indicate that
between one third and one half of the pieces have features
similar to those in Josquin’s body of known works.

VIII. CONCLUSIONS

The most important conclusion that can be drawn from
this work is that the counterpoint module is a useful feature
for classifying musical works by composer. This feature alone
offered considerably more power for classification than any
of the other features we considered, and in our final analysis,
counterpoint modules were the only features used.

A Naive Bayes learning model performed at least as well
as any of the other models that we attempted to use. This is
somewhat surprising given that more complex devices such as
SVMs are better able to model features that are interrelated
with one another as we would expect the case to be with
counterpoints. We believe that with the relatively small training
set, the SVM tended to over-fit the data. When we used cross
validation to examine performance, the SVM usually had very
low training error, however, the estimate of the generalization
error could not be brought below about 20%. The fact that
the naive Bayes model performed so well may suggest that
the occurrence of different counterpoint features is relatively
independent of others. The ensemble learner also performed
slightly worse than the Naive Bayes model. Further analysis
is required to discern the underlying cause. We suspect it is due
to the small amount of training data available and/or specific
ensemble learner used.

Our results may also be used in the future as evidence when



classifying pieces within the set of works with questionable
attribution. This work can provide researchers with an estimate
of the probability of each piece having been composed by
Josquin.

IX. FUTURE WORK

Some extensions of this work include different selections
of features and model approaches. Some features that we had
considered implementing, but were unable to include were
analyzing notes, rhythms, and dissonance on strong beats. In
addition, increasing the range of intervals allowed may yield
more information about songs.

Additionally, discussion with other groups that attempted
to solve similar problems provided ideas about other feature
approaches. First, at least one of the other groups did not use
counterpoints, but did have success in accurately classifying
some of the work. They used less complex features, but the
key to their success was to use combinations of simple features
determined by PCA. We believe that our prediction capability
could be improved by integrating simple timing and rhythm
features with our pitch-based counterpoint features.

Finally, an interesting continuation of this work may be a
clustering based approach to the renaissance music. The music
and features could be used to identify which composers were
most similar, if they changed over time, and/or if any of the
unknown music exhibit such trends.

ACKNOWLEDGMENT

The authors would like to thank Craig Sapp and Jesse
Rodin of the Stanford Josquin Research Project for their
guidance in the project, the project idea, and help with the
data. Additionally, we would like to thank Dr. Andrew Ng and
the T.A.’s for the opportunity to learn about machine learning.

REFERENCES

[1] J. Rodin and C. Sapp, Josquin Research Project [Online]. Available
http://http://josquin.ccarh.org/.

[2] Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for
support vector machines. ACM Transactions on Intelligent Sys-
tems and Technology, 2:27:1–27:27, 2011. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm

[3] John Milsom, ”Analysing Josquin” The Josquin Companion, Oxford
University Press, 2000.

[4] Peter Schubert,”Hidden Forms in Palestrina’s First Book of Four-Voice
Motets”, Journal of the American Musicological Society, Vol 60, No.3
(Fall 2007) pp. 483-556.


