
Schuyler Smith 12/13/13
CS 229 Final Project

Autonomous Hydrofoil
Sailboat

Figure 1: A rendering of what our final boat will look
like. Like the real AC72, it will be a catamaran with
two hulls. The four hydrofoils can be seen projecting
down beneath the boat: two near the center and two
attached to the two rudders near the back. The fi-
nal sail, shown here as a wireframe, will be rigid foam
rather than fabric.

Introduction
The America’s Cup is one of the oldest and most pres-
tigious sailing competitions in the world. The most re-
cent one, held this past summer in San Francisco, was
especially unusual because it allowed boats to hydrofoil
for the first time.

A hydrofoil is a wing-like structure mounted under the
hull of a boat. As the boat increases its speed, the foils
create lift that can raise the boat out of the water,
which greatly reduces wetted area and hence drag: it
is far more efficient to move water around just the foild
than the entire hull. Consequently, hydrofoil sailboats
can sail much faster than traditional boats, but they
are much more difficult to control.

Some friends and I have formed the Stanford Au-
tonomous Sailing Team, funded by Stanford Robotics
Club, to design and build an autonomous scale model

(one meter long, rather than 26 meters) of the AC72
high-performance hydrofoiling catamarans used in the
most recent America’s Cup.

Model foiling sailboats have been built before, but be-
cause of the sensitivity and complexity of the controls,
human RC operators usually can’t keep them "on foil"
for more than a few seconds at a time. Using hydrofoils
at this scale is particularly difficult because some of the
techniques used by larger boats (such as the AC72) do
not translate well. For example, a 26m boat like the
AC72 is relatively immune to waves, but a 1m boat is
not. As a result, the passive stabilization methods used
by the AC72 will be inherently less effective at small
scale. Our design, therefore, uses actively stabilized
foils that remain completely submerged more reliably
and are less affected by waves. This and other features
make our design significantly more complex than exist-
ing designs, and as a result full human control will be
impossible.

Hence, sailing our boat to its full potential is a nontriv-
ial control problem. This paper will explore approaches
I used to control the boat.

Today, the boat is still incomplete. We only began
building the boat this quarter and plan to have it fin-
ished by the end of the school year so we can enter
it in an autonomous sailing competition this summer.
Hence, the results from this paper are from simulation
only, but I believe that my simulation is reasonably real-
istic, and that the methods described will translate well
to the real world.

Method
The boat has three main classes of sensors that can be
used as input to a machine learning algorithm:

Position Provided by GPS and an IMU (accelerome-
ter, gyroscope, compass)

Wind Speed and direction

Height Height above the water. This allows the boat
to detect when it is on foil, and compensate for
waves.

In turn, the boat will be able to control the position
of the sail, the angle of the rudders (for steering), the
elevation of four foils, and a movable ballast system
(a weight that can be adjusted left and right to help
balance the boat).

1



To distill boat control into an optimization problem, I
separated higher-level planning (route finding and steer-
ing) from the task of sailing, and delegated these two
tasks to the planner and the trimmer, respectively.
The trimmer is the focus of this paper. The advantage
of this approach is that since the path of the boat is out
of its control, the trimmer has only one thing it needs
to optimize - boat speed - so our reward function is very
well defined. The planner also doesn’t lend itself well
to machine learning anyway, and is better implemented
with more traditional deterministic route-finding algo-
rithms.

Hence, we can formulate the task of the trimmer as a
Markov Decision Process in the following way:

States will be represented as s = (vb, ~φb, ~vw , h) ∈ S
where vb is the instantaneous speed of the boat
(direction is irrelevant to the trimmer, because we
can translate everything into boat-centric coordi-
nates), ~vw is the velocity of the wind (relative to
the boat), ~φb is the rotation of the boat in three
dimensions (pitch, yaw, and roll), and h is the
height of the boat above the water. Hence, the
state space is seven-dimensional.

Actions are represented as the control outputs a =
(~θs , ~θf , b) ∈ A, where ~θs is the angle of the sail
(which has two sections), ~θf is the angle of the
foils, and b is the position of the movable ballast.
There are four independently adjustable foils, but
we can exploit some more symmetry, and instead
adjust only the average angle, left/right balance,
and front/back balance. Hence, the action space
has a total of six dimensions.

Rewards are boat speed. While conveniently easy
to measure empirically, the relationship between
states, actions, and rewards is obviously still com-
plex.

The state space and action space are both effectively
continuous. Because of the fairly high dimensionality
(seven for the state space and six for the action space)
and limitations of the processor onboard the boat, dis-
cretization of the state and action spaces ended up be-
ing impractical. With a large number of discrete states
processing requirements became too large, and value
iteration took a very long time to learn all the valu-
ations. With a small number of discrete states sailing
performance suffered because of the oversimplification.

Other requirements of the real boat also led to several
other complications. First, testing a wide variety of

states in the real world is impractical, because condi-
tions do not vary quickly. For example, the boat must
perform well in a variety of wind speeds, but on any
given day the boat will only be exposed to a small range
of wind speeds.

Second, experimentation in the real world carries with
it a high cost for mistakes. Failure to stabilize the boat
will flip it very quickly, and righting it and restarting it
is something we would prefer not to have to do often.

An important first step in learning how to control the
boat is building a model of the dynamics of the boat and
state transitions. Unfortunately, as a result of these
complications experimentation to build a deterministic
or stochastic model is difficult.

To combat these, I use two main approaches. First,
to improve the model’s ability to generalize from very
incomplete data, I built a fairly detailed model of the
boat dynamics, which will be described in more detail in
the Implementation section. To keep the model from
getting too complex and due to development time con-
straints, the model actually predicts only most likely ac-
tions, it doesn’t model the full probability distribution.
That is, rather than modeling P : S × A× S → [0, 1],
we model T : S × A→ S.

Second, I used partial human control to guide explo-
ration while learning the state space. Left to random
exploration alone the boat tends to stay in one place,
slowly drift downwind, or flip over. Instead, I used par-
tial human assistance to aid learning. In simulation it’s
easier to control all aspects of the boat because I don’t
have to do it in real time. Since this won’t be possible
for the real boat, I developed a bootstrapping method
where the computer manages an increasing subset of
the controls over time (for example, the foil but not the
rudder or sails). Again, more details will be presented
in the Implementation section.

Once I have a model of state transitions I can per-
form value iteration as described in the lecture notes.
However, I found that this was needlessly complicated.
Since we want to optimize speed and speed is contin-
uous, recursively computing true values is not useful -
an action that increases the speed of the boat immedi-
ately is always better in the long run than one that does
not. Hence, we can just as easily take the value of a
state to be the reward for that state, the instantaneous
speed of the boat. Then computing the optimal policy
is straightforward - we just have to choose the action
that optimizes the reward of the predicted next state.

π∗(s) = argmax
a∈A

R(T (s, a))

2



However, this is still very complex to compute in prac-
tice because we must optimize over all actions. As dis-
cussed above, parameterizing the action space is out
of the question.

It does seem reasonable, however, to want the controls
to change smoothly (the sail can’t actually adjust it-
self instantaneously anyway, for example). With that
in mind, another approach I tried was to, rather than
optimize over all possible actions, only consider actions
that are small permutations from the current one. For
example, for each setting x we can try x , x + ε, and
x − ε. This is much more manageable, but with six
dimensions in the action space and three choices each
it still leaves 36 = 729 possible actions. Unfortunately,
while this seemed very promising, it also doesn’t per-
form very well: in my tests I couldn’t reach a balance
between fine enough granularity to find local optima
and coarse enough to respond quickly to changing con-
ditions.

Hence, my final approach to actually controlling the
boat is significantly different. Rather than calculat-
ing optimal actions directly from the Markov model, I
decided to use the model to train an artificial neural
network that controls the boat directly. That is, rather
than using T : S × A→ S to choose actions, I derived
a function F : S → A. Normally this would be very
inefficient, because training neural networks can take a
long time and as described above time on the boat is at
a premium. However, training the neural network from
the model can be done offline, so this isn’t an issue.

Implementation
All of my code is written in Python, using numpy, etc.
where appropriate. The final sailboat uses an ARM-
based microcontroller comparable in power to a smart-
phone.

Most of the early work on this project was spent de-
veloping the simulation I used to test everything. My
teammates have run fluid-dynamic simulations of the
sail and foils. My simulation uses the data from those
runs to be as accurate as possible. From there, most of
the actual physics is straightforward: the boat is mod-
eled as a rigid body (except for the control surfaces),
and calculating forces and torques is not complex.

I know that my model has some weaknesses. For ex-
ample, I made no attempt to simulate the boundary
layer effect: in reality wind speed increases as you rise
further from the surface of the water. This changes
the apparent speed and direction of the wind from the
base to the tip of the sail. I also didn’t put much effort

into modeling waves. I have a generic noise term in the
height measurements, but we don’t yet know exactly
how sensitive the boat will be to significant waves.

If performance on the real boat is significantly worse
than in simulation these are two of many areas I can
investigate, but until the boat is complete I don’t be-
lieve it’s constructive to worry too much.

The state transition model that the algorithm learns is
based on a simplification of the simulation. In partic-
ular, it encodes most of the same physics, with every-
thing heavily parameterized and with linear or quadratic
error terms. The weights and offsets are learned in a
manner similar to the method described in [1].

To train the state transition model, we need robust
state exploration. As described above, this is boot-
strapped with partial human control. At each stage
the computer controls a subset of the action dimen-
sions and chooses actions based on the optimal pol-
icy algorithm π∗ described above. Because the size of
the action space is greatly reduced and optimal perfor-
mance isn’t essential at this stage the disadvantages to
this approach discussed earlier are less important.

The final controller is a feedforward artificial neural net-
work with two hidden layers. The input layer is fed
normalized state data, and the output layer produces
actions. I use a Python library (arac) for the neural net-
works that is implemented in C++ and open-source, so
it can be compiled for ARM and run efficiently directly
on the boat’s microcontroller.

To train the neural network I use a genetic algorithm
to optimize the weights between nodes. Specifically, it
tests the network in the simulator in 30 different con-
ditions, and measures the average speeds the network
acheived. On my quad-core desktop the performance
of the network stops improving after about 1000 gen-
erations and around a day of CPU time. As mentioned
above, this isn’t a major drawback, because the learned
weights can then be exported to the microcontroller,
which can then activate the final network extremely
quickly.

Results
Results are overall better than I expected. A graph of
the results of optimizing the final neural network are
shown in Figure 2. On the same test that the algo-
rithm uses I scored about a 60 controlling the boat by
hand in simulation, and the network acheives 1.5 times
that performance in about 50 generations. Final per-
formance is nearly twice my score. With practice I’m

3



sure I could improve my manual score, but nonetheless
this is very impressive.

In Figure 3 you can see a heat map of the boat’s per-
formance at all points of sail. The boat performs very
similarly to other high performance sailboats, so this
somewhat validates my model (and our boat design).
Like all sailboats, the boat performs poorly directly up-
wind (the top center of the map) and doesn’t exceed
the speed of the wind downwind (bottom of the map).
However, it performs extremely well across the wind
(either side of the map), which is the most important
region.

Figure 2: A graph of the neural network’s performance
over time, as it was optimized by the genetic algorithm.

Figure 3: A heat map of the performance of the fi-
nal controller at all wind speeds and directions. Zero
wind is at the center, with directly upwind above that,
directly downwind below, and across the wind to ei-
ther side. White is speed 0, varying linearly to solid
black at 3× wind speed. As expected, the boat can-
not sail directly upwind nor downwind at more than the
wind speed. Best performance is across the wind. The
sharp transition on either side from light gray to darker
gray is where the boat has enough wind transition to
foils. The odd patterns in the downwind region are
inconsequential, because it’s more efficient to zig-zag
diagonally and hit the much higher performance dark-
grey regions to either side.

Future Work
The most important part of future work will be testing
everything on the real boat. We only began building the
boat this quarter and plan to have it finished by the end
of the school year so we can enter it in an autonomous
sailing competition this summer.

I expect that I’ll need to make some changes to acheive
real performance similar to my simulations. However, I
hope that the structure of the model my system learns
is robust enough to translate without too much diffi-
culty.

If performance regresses, there are several avenues I
can pursue. As mentioned above, there are some sim-
plifications in my simulation and model that I’m aware
of. I can also rework the model to directly model un-
certainty. That in particular may significantly improve
its performance in a real, noisier environment.

Acknowledgements
While the design and coding presented in this report
are my own work, none of it would have been possible
without the work of my teammates on the Stanford Au-
tonomous Sailing Team: Wyatt Smith, Andrey Sushko,
Thomas Teisberg, and Connor Anderson.

References
[1] Pieter Abbeel, Varun Ganapathi, Andrew Y. Ng.
Learning Vehicular Dynamics, With Applications to
Modeling Helicopters. NIPS 18, 2007.

[2] Pieter Abbeel, Adam Coates, Andrew Y. Ng. Au-
tonomous Helicopter Aerobatics through Apprentice-
ship Learning. IJRP, 2010.

[3] Andrew Y. Ng, Adam Coates, Mark Diel, Varun
Ganapathi, Jamie Schulte, Ben Tse, Eric Berger and
Eric Liang. Inverted Autonomous Helicopter Flight Via
Reinforcement Learning. International Symposium on
Experimental Robotics, 2004.

[4] Rémi Coulom. Reinforcement Learning Using Neu-
ral Networks, with Applications to Motor Control. In-
stitut National Polytechnique de Grenoble, 2002.

4


