
SMS Spam Detection
using Machine Learning Approach

Houshmand Shirani-Mehr, hshirani@stanford.edu

Abstract—Over recent years, as the popularity of mobile phone
devices has increased, Short Message Service (SMS) has grown
into a multi-billion dollars industry. At the same time, reduction
in the cost of messaging services has resulted in growth in
unsolicited commercial advertisements (spams) being sent to
mobile phones. In parts of Asia, up to 30% of text messages
were spam in 2012. Lack of real databases for SMS spams,
short length of messages and limited features, and their informal
language are the factors that may cause the established email
filtering algorithms to underperform in their classification. In
this project, a database of real SMS Spams from UCI Machine
Learning repository is used, and after preprocessing and feature
extraction, different machine learning techniques are applied to
the database. Finally, the results are compared and the best
algorithm for spam filtering for text messaging is introduced.
Final simulation results using 10-fold cross validation shows the
best classifier in this work reduces the overall error rate of best
model in original paper citing this dataset by more than half.

I. Introduction

The mobile phone market has experienced a substantial
growth over recent years. In second quarter of 2013, a total
of 432.1 million mobile phones have shipped, which shows a
6.0% year over year increase [1]. As the utilization of mobile
phone devices has become commonplace, Short Message Ser-
vice (SMS) has grown into a multi-billion dollars commercial
industry [2]. SMS is a text communication platform that allows
mobile phone users to exchange short text messages (usually
less than 160 seven-bit characters). It is the most widely used
data application with an estimated 3.5 billion active users,
or about 80% of all mobile phone subscribers at the end of
2010 [3]. As the popularity of the platform has increased, we
have seen a surge in the number of unsolicited commercial
advertisements sent to mobile phones using text messaging.
SMS spam is still not as common as email spam, where in
2010 around 90% of emails was spam, and in North America
it is still not a major problem, contributing to less than 1% of
text messages exchanged as of December 2012 [4]. However,
due to increased popularity in young demographics and the
decrease in text messaging charges over the years (in China
it now costs less than $0.001 to send a text message), SMS
Spam is showing growth, and in 2012 in parts of Asia up to
30% of text messages was spam. In middle east, some of the
carriers themselves are responsible for sending out marketing
text messages. Additionally, SMS Spam is particularly more
irritating than email spams, since in some countries they
contribute to a cost for the receiver as well. These factors
along with limited availability of mobile phone spam-filtering
software makes spam detection for text messages an interesting
problem to look into.

A number of major differences exist between spam-filtering
in text messages and emails. Unlike emails, which have a
variety of large datasets available, real databases for SMS
spams are very limited. Additionally, due to the small length of
text messages, the number of features that can be used for their
classification is far smaller than the corresponding number
in emails. Here, no header exists as well. Additionally, text
messages are full of abbreviations and have much less formal
language that what one would expect from emails. All of these
factors may result in serious degradation in performance of
major email spam filtering algorithms applied to short text
messages.

In this project, the goal is to apply different machine learn-
ing algorithms to SMS spam classification problem, compare
their performance to gain insight and further explore the
problem, and design an application based on one of these
algorithms that can filter SMS spams with high accuracy. We
use a database of 5574 text messages from UCI Machine
Learning repository gathered in 2012 [6] [9]. It contains a
collection of 425 SMS spam messages manually extracted
from the Grumbletext Web site (a UK forum in which cell
phone users make public claims about SMS spam), a subset
of 3,375 SMS randomly chosen non-spam (ham) messages of
the NUS SMS Corpus (NSC), a list of 450 SMS non-spam
messages collected from Caroline Tag’s PhD Thesis, and the
SMS Spam Corpus v.0.1 Big (1,002 SMS non-spam and 322
spam messages publicly available). The dataset is a large text
file, in which each line starts with the label of the message,
followed by the text message string. After preprocessing of the
data and extraction of features, machine learning techniques
such as naive Bayes, SVM, and other methods are applied
to the samples, and their performances are compared. Finally,
the performance of best classifier from the project is compared
against the performance of classifiers applied in the original
paper citing this dataset [2]. Feature extraction and initial
analysis of data is done in MATLAB, then applying different
machine learning algorithms is done in python using scikit-
learn library.

The project report is organized as follows: Section 2 ex-
plains the preprocessing of the data and extraction of features
from the main dataset, and explores the result of initial analysis
to gain insight. Section 3 explores the application of naive
Bayes algorithm to the problem. In Section 4, application
of Support Vector Machine algorithm to the classification
problem is studied. Section 5 shows the performance of k-
nearest neighbor classifier for the data. Section 6 explores
application of two ensemble methods, random forests and

Label Percentage in dataset
Spams 13.40
Hams 86.60

TABLE I
The distribution of spams and non-spams in the dataset

Adaboost. Finally, Section 6 concludes the report.

II. Feature Extraction & Initial Analysis

As mentioned earlier, our dataset consists of one large
text file in which each line corresponds to a text message.
Therefore, preprocessing of the data, extraction of features,
and tokenization of each message is required. After the feature
extraction, an initial analysis on the data is done using naive
Bayes (NB) algorithm with multinomial event model and
laplace smoothing, and based on the results, next steps are
determined.

For the initial analysis of the data, each message in dataset is
split into tokens of alphabetic characters. Any space, comma,
dot, or any special characters are removed from feature space
for now, and alphabetic strings are stored as a token as
long as they do not have any non-alphabetic characters in
between. The effect of abbreviations and misspellings in the
messages are ignored, and no word stemming algorithm is
used. Additionally, three more tokens are generated based on
the number of dollar signs ($), the number of numeric strings,
and the overall number of characters in the message. The
intuition behind entering the length of message as a feature
is that the cost of sending a text message is the same as
long as it is contained below 160 characters, so marketers
would prefer to use most of the space available to them as
long as it doesn’t exceed the limit. For the initial analysis of
data, we have used the multinomial event model with laplace
smoothing. Extracting tokens for all messages in the dataset
will result in 7,789 features. However, not all of these features
are useful in the classification. Going through the extracted
tokens, we removed the ones with less than five and more
than 500 times frequency in the dataset, since those tokens
are either too rare or too common, and do not contribute to
the content of the messages. These two thresholds are set by
exploring different values and checking the performance of
NB classification algorithm on results. Finally, the remaining
tokens result in 1,552 features.

Figure 1 shows the result of applying NB algorithm to the
dataset using extracted features with different training set sizes.
The performance in learning curve is evaluated by splitting the
dataset into 70% training set and 30% test set. As shown in the
figure, the NB algorithm shows good overall accuracy. The 10-
fold cross validation for this algorithm on current data shows
1.5% overall error, 93% of spams caught (SC), and 0.74% of
blocked hams (BH).

S C =
False negative cases

Number of Spams
(1)

BH =
False positive cases

Number of Hams
(2)

0 500 1000 1500 2000 2500 3000 3500 4000
86

88

90

92

94

96

98

100

Training set size

A
c
c
u
ra

c
y

Test set classification

Training set classification

Test set ham classification

Training set ham classification

Test set spam classification

Training set spam classification

Fig. 1. Learning curve for naive Bayes algorithm applied to the dataset and
evaluated using cross validation (30% of initial dataset is our test set

From the analysis of results, we notice that the length of
the text message (number of characters used) is a very good
feature for the classification of spams. Sorting features based
on their mutual information (MI) criteria shows that this fea-
ture has the highest MI with target labels. Additionally, going
through the misclassified samples, we notice that text messages
with length below a certain threshold are usually hams, yet
because of the tokens corresponding to the alphabetic words
or numeric strings in the message they might be classified as
spams.

By looking at the learning curve, we see that once the NB
is trained on features extracted, the training set error and test
set error are close to each other. Therefore, we do not have
a problem of high variance, and gathering more data may
not result in much improvement in the performance of the
learning algorithm. As the result, we should try reducing bias
to improve this classifier. This means adding more meaningful
features to the list of tokens can decrease the error rate, and
is the option that is explored next.

We update the features list by adding five different flags
to gathered tokens. These flags determine if the length of
the message in characters is ≤ 40, ≤ 60, ≤ 80, ≤ 120,
and ≤ 160. Additionally, we add the string of non-alphabetic
characters and symbols excluding dot, comma, question mark,
and exclamation mark to our tokens. For instance, a string
of characters such as ”://” can imply the presence of a web
address, or a character such as ”@” can imply the presence
of an email address in the message. The resulted features are
again filtered if they are too rare or too common in the dataset.
Finally, we end up with a list of 1582 features.

III. Naive Bayes

In this section, NB algorithm is applied to the final extracted
features. The speed and simplicity along with high accuracy
of this algorithm makes it a desirable classifier for spam
detection problems. In the context of naive Bayes algorithm

0 500 1000 1500 2000 2500 3000 3500 4000
86

88

90

92

94

96

98

100

Training set size

A
c
c
u
ra

c
y

Test set classification

Training set classification

Test set ham classification

Training set ham classification

Test set spam classification

Training set spam classification

Fig. 2. Learning curve for multinomial NB algorithm applied to final features

with multinomial event model, entering the feature of length of
the message corresponds to assuming an independent Bernouli
variable for writing each character in the text message in spam
or ham messages.

Applying naive Bayes with multinomial event model and
laplace smoothing to the dataset and using 10-fold cross
validation results in 1.12% overall error, 94.5% of SC, and
0.51% of BH. Using the data priors and applying Bayesian
naive Bayes with same event model will decrease SC (93.7%)
and BH (0.44%) by a small margin, but overall error will stay
the same. This is what we would expect, since Bayesian model
improves the algorithm in case of high variance. Figure 2
shows the learning curve for mutinomial NB applied on the
final features extracted from dataset. The errors for different
datasets in this plot are produced using cross validation with
70% of the samples as the training set. As it is shown in the
figure, the test set error and training set error are close to each
other and in the acceptable range, and it implies no overfitting
in the model. To reduce the bias and improve the accuracy of
algorithm, we can explore other more sophisticated models in
following sections.

IV. Support VectorMachines
In this section, support vector machine is applied to the

dataset.
Table II shows the 10-fold cross validation results of SVM

with different kernels applied to the dataset with extracted
features. As it is shown in the table, linear kernel gains
better performance compared to other mappings. Using the
polynomial kernel and increasing the degree of the polynomial
from two to three shows improvement in error rates, however
the error rate does not improve when the degree is increased
further. Radial basis function (RBF) is another kernel applied
here to the dataset. RBF kernel on two samples x1 and x2 is
expressed by following equation:

K(x1, x2) = exp(−
‖x1 − x2‖

2
2

2σ2) (3)

Kernel Overall Spams Blocked
Function Error % Caught (SC) % Hams (BH) %
Linear 1.18 93.8 0.47

Degree-2 Polynomial 2.03 85.7 0.27
Degree-3 Polynomial 1.64 89.7 0.40
Degree-4 Polynomial 1.70 90.5 0.60
Radial Basis Function 2.61 81.4 0.32

Sigmoid 13.4 0 0

TABLE II
10-fold cross validation error of SVM with different kernel functions on

dataset

0 500 1000 1500 2000 2500 3000 3500 4000
84

86

88

90

92

94

96

98

100

Training set size

A
c
c
u
ra

c
y

Test set classification

Training set classification

Test set ham classification

Training set ham classification

Test set spam classification

Training set spam classification

Fig. 3. Learning curve for SVM algorithm applied to final features

Finally, applying the sigmoid kernel results in all messages
being classified as hams.

The learning curve for SVM with linear kernel validated
using cross validation is shown in figure 3. From this figure,
there is a meaningful distance between accuracy of trained
model on training set and test set. While the overall training
set error of the model is far less than error rate for naive Bayes,
the test set error is well above that rate. This characteristic
shows the model might be suffering from high variance or
overfitting on the data. One option we can explore in this case
is reducing the number of features. However, the simulation
results show degradation in performance after this reduction.
For instance, choosing 800 best features based on MI with the
labels and training SVM with linear kernel on the result yields
to 1.53% overall error, 91.5% SC, and 0.53% BH.

While applying SVM with different kernels increases the
complexity of the model and subsequently the running time
of training the model on data, the results show no benefit
compared to the multinomial naive Bayes algorithm in terms
of accuracy.

V. k-nearest neighbor

k-nearest neighbor can be applied to the classification prob-
lems as a simple instance-based learning algorithm. In this
method, the label for a test sample is predicted based on the
majority vote of its k nearest neighbors.

Overall Spams Blocked
k Error % Caught (SC) % Hams (BH) %
2 2.78 81.3 0.46

10 2.53 82.6 0.40
20 2.98 78.8 0.35
50 3.4 74.8 0.24
100 4.14 68.4 0.16

TABLE III
10-fold cross validation error of k-nearest neighbor classifier

Table III shows the 10-fold cross validation results of k-
nearest neighbor classifier applied to the dataset.

VI. EnsembleMethods
In this section, two ensemble learning algorithms named

random forests and Adaboost are applied to data. Ensemble
learning methods combine several models trained with a given
learning algorithm to improve robustness and generalization
compared to single models [8]. They can be separated into
two subcategories, averaging methods and boosting methods.
Averaging methods build multiple models independently, but
the overall prediction is the average of single models trained.
This helps in reducing the variance term in error. On the
other hand, boosting methods build models sequentially and
generate a powerful ensemble, which is the combination of
several weak models.

A. Random Forests

Random forests is an averaging ensemble method for clas-
sification. The ensemble is a combination of decision trees
built from a bootstrap sample from training set. Additionally,
in building the decision tree, the split which is chosen when
splitting a node is the best split only among a random set of
features. This will increase the bias of a single model, but
the averaging reduces the variance and can compensate for
increase in bias too. Consequently, a better model is built.

In this work, the implementation of random forests in scikit-
learn python library is used, which averages the probabilistic
predictions. Two number of estimators are simulated for this
method. With 10 estimators, the overall error is 2.16%, SC is
87.7 %, and BH is 0.73%. Using 100 estimators will result in
overall error of 1.41 %, SC of 92.2 %, and BH of 0.51 %. We
observe that comparing to the naive Bayes algorithm, although
the complexity of the model is increased, yet the performance
does not show any improvement.

B. Adaboost

Adaboost is a boosting ensemble method which sequentially
builds classifiers that are modified in favor of misclassified
instances by previous classifiers [5]. The classifiers it uses can
be as weak as only slightly better than random guessing, and
they will still improve the final model. This method can be
used in conjunction with other methods to improve the final
ensemble model.

In each iteration of Adaboost, certain weights are applied
to training samples. These weights are distributed uniformly
before first iteration. Then after each iteration, weights for mis-
classified labels by current model are increased, and weights

Model SC % BH % Accuracy %
Multinomial NB 94.47 0.51 98.88
SVM 92.99 0.31 98.86
k-nearest neighbor 82.60 0.40 97.47
Random Forests 90.62 0.29 98.57
Adaboost with decision trees 92.17 0.51 98.59

TABLE IV
Final results of different classifiers applied to SMS Spam dataset

for correctly classified samples are decreased. This means the
new predictor focuses on weaknesses of previous classifier.

We tried the implementation of Adaboost with decision trees
using scikit-learn library. Using 10 estimators, the simulation
shows 2.1% overall error rate, 87.7% SC, and 0.74% BH.
Increasing the number of estimators to 100 will change these
values to 1.41%, 92.2%, and 0.51% respectively. Like Random
Forests, although the complexity is much higher, naive Bayes
algorithm still beats Aadaboost with decision trees in terms of
performance.

VII. Conclusion
The results of multiple classification models applied to the

SMS Spam dataset are shown in table IV. From simulation
results, multinomial naive Bayes with laplace smoothing and
SVM with linear kernel are among the best classifiers for SMS
spam detection. The best classifier in the original paper citing
this dataset is the one utilizing SVM as the learning algorithm,
which yields overall accuracy of 97.64% . Next best classifier
in their work is boosted naive Bayes with overall accuracy
of 97.50%. Comparing to the result of previous work, our
classifier reduces the overall error by more than half. Adding
meaningful features such as the length of messages in number
of characters, adding certain thresholds for the length, and
analyzing the learning curves and misclassified data have been
the factors that contributed to this improvement in results.

VIII. Acknowledgments
The author gratefully thanks Tiago A. Almeida and Jose

Maria Gomez Hidalgo for making SMS Spam Collection v.1
available.

References
[1] Press Release, Growth Accelerates in the Worldwide Mobile Phone and

Smartphone Markets in the Second Quarter, According to IDC, ”http:
//www.idc.com/getdoc.jsp?containerId=prUS24239313”

[2] Tiago A. Almeida, Jos Mara G. Hidalgo, and Akebo Yamakami.
2011. Contributions to the study of SMS spam filtering:
new collection and results. In Proceedings of the 11th ACM
symposium on Document engineering (DocEng ’11). ACM,
New York, NY, USA, 259-262. DOI=10.1145/2034691.2034742
http://doi.acm.org/10.1145/2034691.2034742

[3] ”http://en.wikipedia.org/wiki/Short Message Service”
[4] ”http://en.wikipedia.org/wiki/Mobile phone spam”
[5] Adaboost, ”http://en.wikipedia.org/wiki/AdaBoost”
[6] SMS Spam Collection Data Set from UCI Machine Learning Repository,

”http://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection”
[7] Scikit-learn Ensemble Documentation, ”http://scikit-learn.org/stable/

modules/ensemble.html”
[8] T. G. Dietterich. Ensemble methods in machine learning. In J. Kittler

and F. Roli, editors, Multiple Classifier Systems, pages 1-15. LNCS Vol.
1857, Springer, 2001.

[9] SMS Spam Collection v.1, ”http://www.dt.fee.unicamp.br/∼tiago/
smsspamcollection”

