
 

1 

A Computational Model for Multi -Instrument Music Transcription 

CS229 Final Project Report, Autumn 2013 
 

Zhengshan Shi, Tony Yang, Huijie Yu 

kittyshi, tyang90, huijie @ stanford.edu 

 
 
Abstract 

The aim of our project is to build a model for 
multi -instrument music transcription. Automatic music 
transcription is the process of converting an audio wave 
file into some form of music notes representations. We 
propose a two-step process for an automatic multi -
instrument music transcription  system including timbre 
classification and source separation using probabilistic 
latent component analysis. 

 

1. Introduction  

 

Automatic Music Transcription for polyphonic 
music is a difficult task in digital signal processing 
given the fact that frequency partials of notes from 
different instrument will mix up the spectrogram and is 
thus difficult to segregate. Different approaches have 
been proposed in order to get pitch information, 
including multi-pitch analysis using human auditory 
periphery (Klaupuri 2008), and source separation. In 
the project, we propose a new two-step method using a 
pre-processing stage of instrument classification along 
with a traditional statistical approach of source 
seperation for decoding the incoming music signal. 
Given a sound mixture of an instrument ensemble (for 
example, a flute-cello duet), our system is expected to 
recognize and generate the music transcriptions (in 
forms of a note matrix) for each instrument voice 
respectively. 

The whole project is divided into two parts. 
First, we implement the instrument classification stage 
in a supervised setting. Training models of different 
instrument spectral characteristics are used for 
estimating the component in a sound file assuming that 
they are unknown. Second, based on the result from the 
instrument classification, we pick up corresponding 
basis vectors from a pre-trained basis-vector library and 
implement the source separation. In order to get the 
note matrix for each instrument layer from a 
polyphonic music piece, we implement the PLCA 
(Probabilistic Latent Component Analysis) algorithm 

for source separation basing on a statistical analysis of 
the training data. We take a supervised learning 
approach in building such model to apply to our 
training data, and the model is updated in an iterative 
process through construction. Furthermore, we smooth 
the separated temporal matrix to get the note matrix as 
a form of music transcription. The whole process is 
illustrated in the following flow chart: 

 

 
Fig.1 Flow Chart 

 
 
2. Stage I : Instrument Classification 
 

We use the Mel-Frequency Cepstral 
Coefficient (MFCC) as representations for instrument 
timbre features. By comparing the feature vectors, we 
comprise the classification method that categorizes a 
piece music played by unknown instruments to match 
a known instrument in the training data set. And weÕre 
using K-nearest-neighbor classifier and softmax 
regression for the classification process. 

 

 
Fig.2 Process of feature (MFCC) extraction  
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2.1 Feature Extraction Ð MFCC 

 

A first step of our approach of music 
transcription is instrument classification. Timbre is a 
multi-dimensional sound perception which enables us 
to distinguish the difference between multiple 
instrument classes and sound quality. Timbre spaces 
project the sound file into a low-dimensional space 
which describes the spectral envelope of musical 
instruments. We choose the MFCC feature, which is 
widely used in speech recognition. We performed a 
discrete cosine transform to the mel-scaled log 
frequency spectrum, and took the first 15 coefficients 
that captures best the spectral shape and envelope of a 
musical instrument as the feature vector. Our time 
frame is chosen to be 1-second long, meaning that a 15-
dimensional feature vector is extracted for each second 
of the audio wave file. 

 

Fig.3 MFCC for the training set 

 

2.2 Training and Testing Process 

 

There are two classification algorithms 
implemented in this stage, K-nearest neighbors (K-NN) 
and softmax regression. Both algorithms treat the 
feature vectors as points in a 15-dimensional space, and 
we label each training feature vector with a number 
corresponding to an instrument type. For the testing 
process, we divide the testing data into 1-second long 
frames, and each of them is represented by a 15-
dimensional feature vector. We then evaluate each of 
the testing vectors (1-second long frames) 
independently, and take the most frequent guess as the 
overall estimation for that piece of testing data. 

The K-NN algorithm measures the Euclidean 
distance between the testing vector and all training 

vectors. Then we listed the K (we tested the case of 
K=1, 10 and 20) nearest neighbors of the testing 
vector and claim it has the same instrument type as the 
majority of its K nearest neighbors. 

The softmax regression builds a hypothesis 
based on the training set of feature vectors, and then 
each of the testing vectors is evaluated by the 
hypothesis. We then take the most probable guess to 
estimate the instrument category of that testing vector.  

After categorizing each testing feature vector 
independently, we combine the classification results of 
all testing vectors for a single piece of solo music (in 
our case, we group 50 feature vectors for a 50-second 
piece of music) and claim that the current piece of 
music is played by the instrument type which 
corresponds to the majority of the 50 feature vectors. 
The results are evaluated by calculating the Òhit ratioÓ, 
i.e., the ratio of feature vectors that provides us the 
correct instrument type, which was judged by 
musicians. 

 

 
3. Stage II: Source separation using PLCA 
 

The PLCA algorithm does a non-negative 
matrix factorization on the audio spectrum (V), and 
decomposes it into a spectral basis matrix (W) and 
temporal weight matrix (H). Each column in the audio 
spectrum V is the frequency distribution of the piece 
of music at a certain time frame, and we name it 𝑃! ! . 
Each column of the spectral basis matrix W is 
composed of a set of spectral basis vectors represented 
by ! 𝑓 ! , and each column of the spectral basis 
matrix is a spectral basis vector. The spectral basis 
vector 𝑃 𝑓 !  is the frequency distribution of a pitch 
played by one instrument. Each column of the 
temporal weight matrix H is a distribution of weights 
! ! !  for spectral basis vectors at a certain time frame, 
so when we multiply the weights on the spectral basis 
vectors and take the sum of the products, we will get 
one column of the audio spectrum. In mathematical 
notation, we have:! 

𝑃! ! !    ! ! ! !𝑧!𝑃! !
!

 

To get the spectral basis vectors ! !𝑓|! ) and 
their respective weights ! ! 𝑧 , we use an EM 
approach that estimates the posterior distribution 
𝑃! 𝑧!!  in the E step, with ! ! 𝑧  and ! ! ! !! !  in the M 
step. In mathematical notation, we have: 
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E-step: 

𝑃! 𝑧|𝑓 = !
! !𝑓|𝑧!𝑃! 𝑧
𝑃(𝑓|! ! ! ! !!

 

 
M-step: 

𝑃! 𝑧 =   
𝑃! 𝑓 𝑃! 𝑧|𝑓!

! ! ! ! ! ! |𝑓!!
 

 

𝑃 𝑓|𝑧 =   
𝑃! 𝑓 𝑃! 𝑧|𝑓!

𝑃! 𝑓 𝑃! 𝑧|𝑓!!
 

 
The incoming audio signal is first transformed 

into an audio spectrum through Short-Time Fourier 
Transform (STFT), with FFT length of 2048, hop size 
of 512 and a sampling frequency of 44100 samples per 
second, which gives us a time resolution of 11.6ms. 

The initial spectral basis vectors are fixed Ðthey 
are extracted from a pre-trained library of basis vectors 
for different instruments and pitches according to the 
instrument label detected in the first stage. In the 
construction of the basis vector library, notes from a 
frequency range of C2 to C4 played by 10 different 
instruments were synthesized using Cakewalk Sonar. 
We keep 2-3 seconds for each note, and perform a 
STFT on the basis note to extract the spectral feature 
vector as the basis vectors. 

Once we load the spectral basis vectors into the 
algorithm, temporal weights and spectral basis vectors 
are iteratively updated based on the original audio 
spectrum. The resulted temporal weight matrix H 
represents the notes played by an instrument along the 
time axis. Since the probability of a pitch shift in a 
short amount of time frames is low, to eliminate the 
systemÕs over-sensitivity to transients and noise in the 
temporal matrix, we implement a moving average filter 
to smooth the detected pitch among neighboring frames.  
 

4. Evaluation 

 

We were having two testing cases for 
instrument classifications. Test case I includes music 
pieces from 6 different solo instrument types, and test 
case 2 includes three solo instruments and two 
instrument ensembles. The hit ratio of instrument 
classification with two different algorithms were 
characterized in the following table. 

 

 

 

Test Case I: 

Hit Ratio flute clarinet trombone cello piano violin 

K-NN 0.98 0.70 0.96 1.00 0.80 1.00 

Softmax 0.86 0.86 1.00 1.00 0.66 0.96 

 
 
Test Case II: 

Hit Ratio flute clarinet cello flute+cello clarinet+piano 

K-NN 0.96 0.70 1.00 0.98 0.56 

Softmax 0.86 0.86 1.00 1.00 0.58 

 

Based on our preliminary result of instrument 
classification, we see that our algorithm was more 
robust on string instrument (cello & violin). A 
possible reason for that is that string instruments have 
a smoother spectral envelope, which makes the feature 
extraction part more accurate than the woodwind 
family. Since our aim for the final project is to 
separate a duet of a woodwind + string combination, 
the algorithm for detecting the woodwind + string case 
works efficiently. 

After the pre-processing instrument 
classification stage, we apply PLCA algorithm on a 
piece of duet music played by flute and cello. We take 
the first 4.2 seconds of the music, and the spectrum is 
generated with STFT. Then we combine our 
synthesized basis vectors into a spectral basis matrix. 
The calculated temporal weights matrix represents the 
notes played by an instrument. The temporal weights 
for the first five basis vectors is illustrated in the 
following figure, with the horizontal axis for time, and 
vertical axis for intensity. 

 

 
Fig.4 Temporal weighted matrix for Cello part 
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Fig. 5.1 Separated Cello Note Matrix 

 

 
Fig. 5.2 Smoothed Cello Note Matrix after applying the 

moving average filter 

 
Fig. 5.3 Musician hand-annotated Ground Truth 

(Audio Source: J.S. Bach  Suite en si mineur Ð  

Polonaise et Double  0-4.2s) 

The accuracy of the temporal weights matrix 
compared to a musician-annotated ground truth is 
originally 87%. With a moving average filter applied 
on each row of the matrix, we have an improved 
accuracy of 92%.  

 

5. Conclusion 

 
This project uses a fixed based PLCA to 

factorize the audio spectral mixture into music 
transcription in form of note matrices. Compared with 
the traditional statistical method, our approaches use 
an additional pre-processing stage of instrument 
classification for basis vector estimation. An incoming 
audio mixture is first coming through our instrument 
classification system. The basis vectors are then 
picked up from a pre-trained library containing 
different basis vectors of notes played by various 
instruments. Based on the basis vector, we perform a 
PLCA algorithm to factor out the matrix into a 
spectral matrix and a temporal-weight matrix. We then 
applied the moving average filter for post-processing 
of the temporal-weight matrix to get a cleaner note 
matrix, which is a representation of the polyphonic 
music transcription. Our experiments show a robust 
result for detecting woodwind + cello instrument 
family duet. Future work will include an unsupervised 
approach of instrument classification based on timbre 
space analysis, and a more complete basis vector 
library including note features from different playing 
techniques for a particular instrument. 
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