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Abstract 
Our research presents an unsupervised 
method of retroactively labeling gestures 
(taken from American Sign Language) in an 
unlabeled video dataset. Given an estimate 
for the number of gestures (“temporal 
motifs”) contained in the video, our program 
attempts to categorize the gestures, as well 
as estimate their starting times within the 
video. The model uses low-level graphical 
features extracted from the video to 
determine significant information (repetition 
of full or partial gestures) without temporal 
dependence, through probabilistic latent 
semantic analysis (pLSA). pLSA 
additionally acts to reduce the 
dimensionality of the large dataset . 
Gestures and their starting times are then 
found by probabilistic latent sequential 
motif (pLSM) analysis on the compressed 
information determined by the pLSA. Once 
the gestures are categorized and their 
starting times are determined by the pLSM 
analysis, a simple retroactive labeling of 
each found gesture results in an accurate 
labeling of the entire video data set. 
 
Introduction 
In the field of gesture identification, there 
exists much work on the recognition and 
classification of sign language, American 
Sign Language (ASL), in particular. Several 
successful models have been proposed for 
identifying static signs (e.g., signs of the 
alphabet) [5,6,7]. Despite this, there is 
relatively little work focused on the 
recognition and classification of dynamic 
signs (signs for which the motion is not 

separable from the meaning). To date, one 
of the only successful studies produced 65% 
accuracy after 10 hours of exposure to 
dynamic, supervised signs [9]. Very few, if 
any, studies have approached the problem of 
dynamic sign recognition with an 
unsupervised model. Initially, we planned to 
use a supervised model using labeled sign 
data, however, it was not readily available. 
This, in combination with the notable 
absence in the field on unsupervised 
approaches, motivated our interest in 
developing a means of identifying repeated 
signs without supervision in order to learn 
what a sign ‘looks like.’ In theory, then, 
given an internal representation of what a 
sign looks like, our algorithm would 1) 
allow the video to be accurately labeled at 
the substantially reduced cost of labeling 
each of the representations, and 2) given a 
metric and probability threshold, allow 
identification of a new sign as either a 
particular sign in the built-up vocabulary, or 
a new sign 
In a generalized context, this problem has 
been referred to as temporal “motif 
discovery’ [8]. Most recently, Emonet et al 
developed a method for extracting temporal 
motifs from video of a traffic intersection 
(e.g., identifying a right turn, a left turn, a 
crowd crossing the sidewalk, etc.) [2]. 
Because of its success, as well as the 
analogy between finding temporal motifs in 
traffic video and in video of signs, we 
sought to apply their model to our problem 
by adapting it to fit the setting of sign 
language. Our treatment of the problem is 
thus broken down into four primary 



components: feature extraction, feature 
dimensionality reduction, motif extraction, 
and validation.  
 
Model Overview 
The two primary algorithms utilized in our 
study were probabilistic latent semantic 
analysis (pLSA) and probabilistic Latent 
Sequential Motif (pLSM) analysis. The first 
was used to reduce the dimensionality of the 
data (low-level graphical features) passed to 
the second, while the second incorporates 
temporal information to determine temporal 
motifs. Both algorithms operate primarily on 
data in the form of a “bag of words,” a 
matrix storing counts of “words” in 
“documents” [1]. These counts are then used 
to generate probability distributions of latent 
variables (the number of which is specified 
by a parameter) over the data with the 
estimation-maximization algorithm. In the 
pLSA, the words are the low-level graphic 
features described below, the documents are 
the spatio-temporal boxes containing those 
features in bins, the latent variables are 
components of signs (segments of motion 
that are repeated throughout the video, but 
not necessarily whole signs), and the 
generated distributions are P(w|z) and P(z|d) 
where w refers to the words, z to the latent 
variables, and d to the documents. In the 
pLSM analysis, the words are frequency 
counts estimated by the pLSA, the 
documents are video segments, the latent 
variables are signs (temporal motifs), and 
the generated distributions are P(z|d), 
P(ts|z,d), P(w|z), and P(tr|w,z), where w, z, 
and d are as before, ts is the starting time of 
the sign within a document, and tr is the 
relative time within a sign (ie, tr = 0 with 
respect to latent variable z refers to the start 
time ts, of that variable z). These processes 
are described in greater detail below. 
 
Feature Extraction 

In [1,2], Emonet et al proposed the use of 
low-level graphical features (ie, video frame 
pixel by pixel) such as optical flow and 
spatio-temporal location (coordinate (w, h, 
f) where w and h represent a pixel position 
in a frame, and f is a frame) to serve as the 
words for the pLSA [2]. We created 
documents from these features by dividing 
the video into 10 x 10 x 6 boxes (with 2 
frame of overlap between documents) over 
which we binned the flows into four motion 
categories: left, right, up and down. A 
manually determined threshold was used to 
eliminate pixels without significant motion. 
To these bins, we elected to add additional 
features derived from the edges of our 
images. Similarly to optical flow, we binned 
the edges into four categories: horizontal, 
vertical, and two diagonal categories (45 
degrees off of the horizontal and vertical, 
respectively). These were appended as 
additional features after testing on artificial 
data, which indicated that the pLSA might 
require improved features. 
 
Dimensionality Reduction 
The features above contain an enormous 
amount of data. For a five-minute video of 
signs, the main video file is a matrix of 
approximate size 540 x 960 x 3 x 8000. 
Given our resources, processing matrices of 
this size was not realistic or time efficient 
because of the computational expense. Thus, 
we analyzed the features from above using a 
pLSA in order to reduce the amount of data 
that the motif-finding algorithm (pLSM) 
needed to process. This analysis uses EM 
maximization to maximize the joint word-
document log-likelihood probability 
distribution in order to generate locally 
optimal multinomial distributions for word-
document co-occurrences. We additionally 
attempted to perform this reduction step 
with latent dirichlet analysis, but found that 
it was too computationally expensive for the 



quality of video (540 x 960) and frame 
sampling rate (10 fps) we desired. 
 
Model 
The model that we use for the temporal 
motif-finding, pLSM analysis, is a 
generative one. It is summarized as follows 
[2]: 
 
• Draw a temporal document d with 

probability P(d) 
• Draw a latent motif z from P(z|d) 
• Draw the starting time ts from P(ts|z,d) 
• Draw a word and relative time pair (w,tr) 

from P(w,tr|z) 
• Set the absolute time in the document to 

the starting time plus the relative time 
 

This process is also illustrated in Figure 1 
below [2]. Generally, as with pLSA, it uses 
EM maximization to produce locally 
optimal multinomial distributions on the co-
occurrence of words (sign segments found 
from pLSA) and documents (video 
segments). Specifically, Tz is a specified 
maximum sign length (in frames), ta is a 
time (frame) occurrence, ts represents a 
starting time (frame) of a sign, and tr is the 
relative time given a sign (number of frames 
from ts). The algorithm itself is outlined in 
Figure 2 [1]. 
 
Figure 1 – taken from [2] 

 
 
 
 
 
 

Figure 2 – Equations for pLSM EM-maximization

 
 
Synthetic Data 
Figure 3 – Synthetic data in a., a. with noise added 
in b 

a.  
b.  
 
We first demonstrate the temporal motif 
extraction algorithm on the artificial count 
data in Figure 3b. Were this data not 
synthetic, it would represent the counts 
matrix calculated by equation 5 in Figure 2. 
Figure 3a shows the data before Gaussian 
noise (mean 0, standard deviation 1) was 
added. It contains three different motifs, as 
shown in Figure 4a-c, comprised of five 
words (motif components), of different 
lengths (3, 4, and 5) at random positions in 
the 200 frame document. The results of 
pLSM analysis with a maximum motif 
length of 6 and an estimated number of 
motifs, 3, are shown in Figures 4-5. Figure 4 
d-e represents the estimated motifs, and 
Figure 5 represents the estimated starting 
times of the motifs. As is clear from 
comparing Figures 4a-c and 4d-e, the model 
yielded estimated motifs that are identical to 
the synthesized motifs. Moreover, in 
visually comparing Figure 5a with Figures 
5b-d (the ith row in 5a corresponds to the ith 
image beneath 5a. The rows represent 
motifs, the columns represent starting times. 
Also note that some scaling differences 
arose in formatting the image, and that the 
times do, in fact, correctly line up), it is clear 
that the model is most strongly weighted 

E − Step :P(z, ts |w, ta,d) = P(w, ta,d, z, ts)
P(w, ta,d)

where,P(w, ta,d) = P(w, ta,d, z, ts)
ts=1

Tds

∑
z=1

Nz

∑

M − Step :P(z | d)∝ n(w, ts+ tr,d)P(z, ts |w, ts+ tr,d)
w=1

Nw

∑
tr=0

Tz−1

∑
ts=1

Tds

∑

P(ts | z,d)∝ n(w, ts+ tr,d)P(z, ts |w, ts+ tr,d)
tr=0

Tz−1

∑
w=1

Nw

∑

P(w, tr | z)∝ n(w, ts+ tr,d)P(z, ts |w, ts+ tr,d)
ts=1

Tds

∑
d=1

D

∑

n(d, ta,w) = 1
n(dta,ω)

ω∈Wy∑
n(dta,ω)p(ω | y)

ω
∑



towards the correct motifs at the correct 
times. This serves to demonstrate the 
robustness of the model given noisy data. 
 
Figure 4 – True and learned synthetic motifs 

a-c.  

d-f.  
 
 
Figure 5 – True and learned motif starting times for 
the synthetic data 

a. 

b. 

c .

d.  
 
Real Data Collection 
Originally, we intended to use Microsoft 
Kinect’s depth sensor in conjunction with 
RGB video to collect the data for this study. 
After observing that the depth information 
did not have the granularity to substantially 
contribute to the model, we elected to use 
only RGB video and extract features using 
optical flow and edge detection, as described 
previously. The preliminary results 
presented here were recorded with the 
Kinect camera (5 fps). In the video, we used 
the signs for “help,” “want,” “hello,” and 
“please,” intentionally selecting a diverse 
vocabulary to strain the model. Although we 
recorded the data ourselves, we consulted a 
professor of Sign Language at Stanford 
University for her expertise in signing prior 
to collecting the data. Figure 6 shows a still 
image of the sign for “help.” 
 
 
 
 
 

Figure 6 – Image of the sign for “help” 

 
 
Real Data 
After extracting features from the video of 
signs, one result of which is shown in Figure 
8 from the video (original image, optical 
flow overlay, and edge overlay), we 
analyzed the videos with pLSA. Figure 8 
shows one component of a sign (the sign 
“help”) found by the pLSA on the second 
video. Generally, the result of feature 
extraction and pLSA were qualitatively very 
similar to these images, in that they were 
consistently correctly and identifiably 
associated with a sign. 
Results 
We only qualitatively compare the estimated 
starting times for the found motifs and the 
true starting times. These results are shown 
in Figure 7 with a. corresponding to the true 
times, and b. corresponding to the estimated 
times. As can be seen by comparison of the 
images, where row represents a sign, and 
column represents a starting time, our 
pipeline was able to identify, with 100% 
accuracy, the signs for “want,” “hello,” and 
“please,” finding one false positive (bottom 
left corner) on the sign for want. The sign 
for “help” was correctly identified 80% of 
the time. Also note the weak, but significant, 
probabilities in the first row of each figure. 
With the exception of two starting times 
predicted for the sign for “please,” all of the 
estimated start times align with the true start 
times. This can perhaps be explained by the 
fact that the sign for “please” is 



approximately 1.5 times the length of the 
others, and so may vary more. 
  
Figure 7 – True and learned motif starting times for 
the real data 

a.  

b.  

 

 
 
 
Discussion 
In the preliminary video, comparison of the 
learned and true labels suggests that our 
procedure was effective in determining both 
the identity of the gestures and their starting 
times throughout the video. Examination of 
the learned patterns shows that these motifs 
do indeed correspond with the intended ASL 
signs with high accuracy. Despite these 
promising indications though, the algorithm 
appears to have assigned unacceptably low 
probabilities to several instances of the 
‘help’ sign, which could have resulted from 
the low fps of the collected video or the low 
dynamic content of the sign itself. Future 
work will take advantage of the non-
overlapping nature of ASL signs to increase 
sign fidelity. 
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Figure 8 – Original image, optical flow 
and line features for a learned pLSA topic 


