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1 Introduction

Close to 40% of the primary energy consumption in the U.S. comes from commercial and res-
idential buildings [1]. Therefore, reducing this energy consumption is very important, both
economically, and environmentally (due to the amount of CO2 emitted in the process of gen-
erating the electricity). Predicting the energy consumption of buildings (energy modeling) is a
key component in reducing the building energy consumption. Two traditional types of energy
modeling are forward modeling (using purely physical simulations) and inverse modeling (using
statistical methods along with expert knowledge, to relate the energy consumption to a set
of general inputs such as the outdoor temperature, etc.) [2]. If we have access to sensor data
(both inside and outside the building) however, a better alternative is sensor based energy mod-
eling using statistical machine learning techniques. [2] uses seven different machine learning
algorithms to predict the total hourly energy consumption of three residential buildings (called
Campbell Creek Homes) designed to evaluate the effectiveness of residential construction and
efficiency technologies in a controlled environment. In this project, we apply three of these
algorithms (Simple Linear Regression, Support Vector Regression or SVR, and Least Squares
Support Vector Machines or LS-SVM) to the energy consumption and sensor data from the
Y2E2 building on Stanford campus. This rich data-set allows us to model different parts of
the total consumption (i.g. lighting, AC, plug loads, etc.) separately, which could lead to more
accurate results compared to the case where we are modeling the total consumption as a whole.

2 The Y2E2 data

The Yang and Yamazaki Environment & Energy Building (Y2E2), is a good case study for
energy performance modeling. A number of electrical power sensors are installed throughout
the building. The power sensors measure lighting, plug load, and overall power at different floors
and portions of the building. As an example, Figure 1a below shows that light is measured
on every floor, plug loads are measured on west and east portions of each floor separately and
a number of other power sensors such as the server room, cafe, etc. are also available. The
sensors data is collected every minute in SEE-IT database and can be accessed, plotted, and
exported using SEE-IT application. An example of a plot generated by SEE-IT is shown in
Figure 1b. In this plot, the electrical power of the caf on the first floor and outside lighting are
illustrated in a one-week period from 3/1/2013 to 3/8/2012.
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(a) The location of sensors.
(b) Sample power consumption time se-
ries plotted by SEE-IT.

3 Algorithms, attributes, and features

3.1 Algorithms

Let x be a vector of attributes, φ(x) be a feature mapping, and {(x(i), y(i))}mi=1 be our training
set. We are looking for a hypothesis in the form of hw,b(x) = wTφ(x) + b. In linear regression,

w and b are minimizers of
∑m

i=1

(
hw,b(x

(i))− y(i)
)2

. In SVR, w and b are obtained from the
following quadratic program [3]:

minimize
w,b

1

2
wTw + C

m∑
i=1

(ξi + ξ∗i ) (3.1)

y(i) −wTφ(x(i))− b ≤ ε+ ξi, 1 ≤ i ≤ m

wTφ(x(i)) + b− y(i) ≤ ε+ ξ∗i , 1 ≤ i ≤ m

and in LS-SVM we have to solve the following optimization problem [4]:

minimize
w,b

1

2
wTw + C

m∑
i=1

ξ2i (3.2)

wTφ(x(i)) + b+ ξi = y(i), 1 ≤ i ≤ m

where C and ε are tuning parameters, and ξi and ξ∗i are slack variables.

3.2 Attributes

First we note that time (measured in hours) should be included in the model for any part of the
total consumption. If everything else was fixed, one would expect φ to be a periodic function of
time (period=24h). Therefore we include sin

(
t2π
24

)
and cos

(
t2π
24

)
in our attributes. Besides time,

we could include different attributes when modeling each data-set. In modeling the lighting
power, we add the illumination L (measured in Lux). In modeling the power consumed by
the AC system however, we add two other attributes, the outside dry bulb temperature T ,
and an binary variable s indicating whether the main window is open or closed on each floor.
Also note that some of these attributes are different on different floors, which means that some
of the modelings should be done separately for each floor. When modeling the total power
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consumption of the building, we include all of these attributes. In order to distinguish between
weekends or holidays and weekdays, we can add a binary attribute d that is 1 on the weekdays
and 0 otherwise, or we can model them separately.

3.3 Features

If we use the kernel trick for training in LS-SVM and SVR, we will not need to explicitly write
down the features. However, in LS, or when we are using a linear kernel in LS-SVM and SVR,
we need to state the features explicitly. Here we briefly explain what features we are going to
use for those cases.

For features that are functions of time, because of the periodicity, we use 2nt features
{sin

(
kt2π

24

)
, cos

(
kt2π

24

)
}nt
k=1, where nt will be determined using a feature selection scheme. For

the outside temperature and illumination, we use polynomials of degrees nT and nL respectively.
Although the degree of each of these polynomials can also be determined using a feature selection
scheme, they are easier to tune intuitively. For example, it makes sense to use a polynomial of
degree 3 in the outside temperature. The reason is that a cubic polynomial can capture the
facts that i) the needed power is positive if the outside temperature is either below or above the
set-point temperature, and ii) the power needed for cooling is different from that of heating.

Finally, the interaction of these features can also be used. Specifically, we should include
the interaction of the holiday and weekend indicator d with all the other parameters. This is
equivalent to modeling these days and the weekdays separately.

4 Implementation and results

We train the LS and LS-SVM for the power consumption data gathered every over a 9 months
(from February 1st to October 1st, 2013) once every 15 minutes 1, and assess the accuracy of
the trained model by looking at the Coefficient of Variance (CV) for a test data-set of power
consumption collected over an (almost) three-week period (from October 4th to October 23rd,
2013, one data point per hour). The Coefficient of Variance is defined as follows:

CV =
1

N−1
∑N

i=1

(
y(i) − ŷ(i)

)2
ȳ

× 100 (4.1)

where N is the size of the test set, y(i)s are the actual consumption values, and ŷ(i)s are the
oned predicted by the model.

Before training, a simple preprocessing was performed by scaling all the attributes, so that
they all are of the same order. We then trained different models to the following data-sets: AC
power for each of the three floors, the lighting power of the building, the plug load for the whole
building, and the total power consumption. We trained Linear Least Squares, and LS-SVM
with three different Kernels: linear, polynomial, and Gaussian. The tuning parameters were
found by a 4-fold cross validation and grid-search as suggested in [5]. We implemented both
methods in MATLAB. We also tried implementing SVR. However the slow running time of
the optimization problem for SVR due to inequality constraints (even when using LibSVM),
together with the facts that there is one more regularization parameter (ε) and we use a brute-
force grid search method for picking the cross-validation parameters made the feasible size of

1The Y2E2 sensor data is gathered every minute, however using all the data would hugely increase the
training size without adding much information due to the auto-correlation in the time series data.
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the data set on which we could train the model very small, and we decided to include the results
only for LS and LS-SVM.

We used forward feature selection in choosing nt, nL, and nT . In all cases, nt was either 2 or

3, nL was 1 or 2, and nT was 2 or 3. When using a Gaussian kernel KG(x, z) = exp
(
−‖x−z‖

2
2

2σ2

)
,

the parameter σ was included in the cross-validation with grid-search. For a polynomial kernel

KP (x, z) =
(
xT z + cP

)DP , cP was found in the grid search, while DP was incremented until the
validation error started to increase (similar to forward selection).

As a final note before we present the results, we note that in building energy modeling, the
CV errors are usually larger compared to modeling the energy consumption of a city, a state,
or a country. The reason is that, roughly speaking, the power consumption time series in a
building is noisier than that of the whole city or state. For example, the CV errors obtained in
[2] are of the order of %10 , and sometimes as high as %40 for almost all the methods tried.

Table 1 summarizes the CV errors (in percent, rounded to the nearest integer) for the
application of different methods to different data sets. Although we have modeled the AC
power for different floors separately (because the window parameter is different for them), we
present the CV error for the sum of these powers here.

Total Consumption Plug Loads Lighting AC Power
LS 19% 15% 28% 7%
LS-SVM - Linear Kernel 19% 14% 28% 5%
LS-SVM - Polynomial Kernel 24% 20% 33% 7%
LS-SVM - Gaussian Kernel 16% 14% 25% 5%

Table 1: The CV errors in prediction of different hourly power consumptions by different
methods.

We can see that LS-SVM with a linear kernel is at least as good as LS, and they are especially
very close to each other when the error is large. The first part is expected form the definition
of these methods. One can easily show that with the same feature mappings, the solution of
LS-SVM converges to that of LS if we send the regularization parameter C to infinity. In the
cases where the two models are close, our cross-validation chose a high value for C. LS-SVM
with a Gaussian kernel seems to be the most accurate learning method for all of the data-sets,
while LS-SVM with a polynomial kernel seems to have the worst accuracy. We suspect that
the sub-par performance of the polynomial kernel might be due to effect of the parameter CP .
A large CP would give higher wights to the interactions between different attributes. Physical
intuition (and the results for LS-SVM with a linear kernel) suggest that monomial functions of
the attributes T ,L, and t are more important predictors of the power consumption than their
interactions, which suggests that a small CP should be used. However, as explained before, the
interaction between the holiday indicator attribute d and the other variables helps us capture
the difference between the power consumption on the weekends and the weekdays, which we
may not be able to capture very well with a small CP .

Although CV is a good indicator for performance of our methods, there are qualitative
differences between the methods that are not reflected through CV. Comparing the predicted
time series with the actual one can be useful for a qualitative assessment of the algorithms.
Here we look a data set that all four methods approximated relatively well, the AC power
consumption. Figure 1 shows the actual and predicted AC power consumption on the second
floor for each method over our 20-day test period.
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(c) Linear regression
(LS).
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(d) LS-SVM with linear
kernel.
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(e) LS-SVM with Gaus-
sian kernel.
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(f) LS-SVM with poly-
nomial kernel.

Figure 1: The predicted AC power consumption on the 2nd floor. In all plots the red curve is
the predicted time series and the blue curve is the actual power data.

It can be seen that all methods are more accurate on the weekdays, compared to the week-
ends and holidays. This is likely because for those days i) there are more training examples,
and ii) the consumption patterns are more regular. If we wanted to compare the methods qual-
itatively, again LS-SVM with a Gaussian kernel seems to be the best. Specifically, it is more
accurate on the weekends. LS-SVM with linear kernel is a close second. Its performance on the
weekends is close to (or maybe even slightly better) than Gaussian kernel, however it shows a
slight undershoot on the weekdays. Simple regression has good accuracy on the weekdays, but
has a large undershoot on the weekends. And finally, LS-SVM with polynomial is less accurate
than all the other methods, the weekdays, and on the weekends, its accuracy is close to that of
LS, while worse than the other two.

5 Conclusion

In this project, we implemented the linear Least squares, and the support vector machines least
squares algorithms with various kernel functions for predicting the hourly power consumption
in the using the sensor measurement data in the Y2E2 building, and compared (qualitatively
and quantitatively) the accuracy of the results obtained using these methods.
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