While reviewing related literature, we also found that a specific type of neuron activation function, namely linear rectifiers, are widely applied and achieved state-of-the-art performance in a number of recent publications. Hence in this project, we’ll adopt a variant of linear rectifiers for our deep neural networks proposed in [3].

3. DATASET

In this project, the Switchboard speech recognition corpus\(^2\) was chosen as our study dataset mainly because of two reasons. First, with about 2,400 telephone conversations from 543 speakers, this dataset contains a large amount of data that are highly diverse, which allows large deep neural networks trained supervisely without the concern of heavy overfitting and poor generalization. The size of the corpus also relieves the burden to build a sophisticated language model. This allows us to focus on the acoustic model, and hopefully reducing the system WER by improving the senone (or frame) accuracy.

Another major reason for our choosing Switchboard (SWBD) over other datasets is that SWBD contains a number of well-documented linguistic features that were collected alongside the speech data, which would significantly help in verifying the idea that such features might help improve the performance of acoustic models. Below we will briefly describe the features used in our project, the rationale behind using them, and some basic statistics across the dataset. Before listing the linguistic features, it is worth noting that the input acoustic features should have been projected following a standard procedure to a subspace where speaker-dependent information are supposedly removed. However, due to the (conceptually) high nonlinearity of speech information with regard to its variability, we believe that some speaker-dependent information still exists within the acoustic features, and by introducing the corresponding linguistic features we can cancel out these “residuals” with highly nonlinear deep neural networks to achieve better performance.

- **Speaker Gender.** Speakers of different sexes tend to present significant differences in pitch change, speaking speed (which affects the presence of senones related to repetition/deletion/insertion), as well as word choice (which affects the probability of presence of different senones).
- **Speaker Dialect Region.** Speaker dialect tends to significantly affect their pronunciation of phones.

\(^2\)http://www.isip.piconepress.com/projects/switchboard/
Before introducing linguistic features, we briefly analysed the property of the dataset, and performed baseline training on several different deep neural networks that we will elaborate below. To balance between performance and training speed, the networks used in our project shared the same basic structure with 1,640 acoustic input units, three linear rectifier hidden layers of 2,048 units each, and a classification output layer with 8,986 senone classes where errors are back propagated from. The training set statistics of the senone labels is shown in Fig. 2 (log-scale).

From Fig. 2 it is evident that the senone labels follow a very skewed distribution in the training set, for which multiclass classifiers usually fail to achieve high accuracy. As a start, we trained standard softmax deep neural networks (DNNs) with cross-entropy cost function (CENet) on about 280 hours of speech data and tested on a separate 4.7 hours. With stochastic gradient descent, we trained the network on the whole training set with minibatches of 256 training examples. In the meantime, we considered it a good idea to attempt large-margin cost function (SVMNet), which conceptually should work better on multiclass classification tasks than CENet because it is purely discriminative rather than generative. Then, to account for the skewed distribution of the labels, we also tried to modify CENet with hierarchical classification. Specifically, after sorting the labels in decreasing order by their frequencies, we progressively classified the top 2,000 (HCENet-2k) or 4,000 (HCENet-4k) senones against the rest until all labels are classified, and added the cost functions of these classifiers together to optimize with the DNN. Finally, we also attempted another scheme to address the skewness, reweighing cost functions. By reweighing the cost function softmax and large-margin networks with reciprocals of label frequencies, we obtained two final baseline networks RwCENet and RwSVMNet. The results of these baseline networks are shown in Table 1 after 5 epochs of training (usually took 3-7 days for each model with GNumPy).

Surprisingly, CENet alone is capable of working well, while SVMNet, which ideally would have been better as a discriminative rather than generative model, turned out to be a lot worse. However, by looking at the reweighed models, we can see that RwSVMNet improves significantly based on SVMNet, which probably suggests that SVMNet’s failure resulted from the imbalancement of training examples within each mini-batch of stochastic gradient descent, in which case the parameters for rare classes hardly got updated with enough positive examples, while reweighing the cost function alleviates this problem in gradient computation. On the other hand, reweighing didn’t seem to help CENet, which is predictable as softmax classifiers are generative models, which works best if the prior knowledge of the data is correctly exploited. Also surprisingly, hierarchical classification scheme didn’t work well on this dataset. This might suggest that the major challenge of the dataset is the distinction between some frequent class versus some infrequent ones, rather than among classes with similar frequency in the training set, in the sense that compared to CENet, the drop in performance resulted from the network’s feature extraction capability misused on minor discriminations. These observations lead to potential future work directions on this dataset described in Section 6.

4. BASELINING

Before introducing linguistic features, we briefly analysed the property of the dataset, and performed baseline training on several different deep neural networks that we will elaborate below. To balance between performance and training speed, the networks used in our project shared the same basic structure with 1,640 acoustic input units, three linear rectifier hidden layers of 2,048 units each, and a classification output layer with 8,986 senone classes where errors are back-propagated from. The training set statistics of the senone labels are shown in Fig. 2 (log-scale).

From Fig. 2 it is evident that the senone labels follow a very skewed distribution in the training set, for which multiclass classifiers usually fail to achieve high accuracy. As a start, we trained standard softmax deep neural networks (DNNs) with cross-entropy cost function (CENet) on about 280 hours of speech data and tested on a separate 4.7 hours. With stochastic gradient descent, we trained the network on the whole training set with minibatches of 256 training examples. In the meantime, we considered it a good idea to attempt large-margin cost function (SVMNet), which conceptually should work better on multiclass classification tasks than CENet because it is purely discriminative rather than generative. Then, to account for the skewed distribution of the labels, we also tried to modify CENet with hierarchical classification. Specifically, after sorting the labels in decreasing order by their frequencies, we progressively classified the top 2,000 (HCENet-2k) or 4,000 (HCENet-4k) senones against the rest until all labels are classified, and added the cost functions of these classifiers together to optimize with the DNN. Finally, we also attempted another scheme to address the skewness, reweighing cost functions. By reweighing the cost function softmax and large-margin networks with reciprocals of label frequencies, we obtained two final baseline networks RwCENet and RwSVMNet. The results of these baseline networks are shown in Table 1 after 5 epochs of training (usually took 3-7 days for each model with GNumPy).

Surprisingly, CENet alone is capable of working well, while SVMNet, which ideally would have been better as a discriminative rather than generative model, turned out to be a lot worse. However, by looking at the reweighed models, we can see that RwSVMNet improves significantly based on SVMNet, which probably suggests that SVMNet’s failure resulted from the imbalancement of training examples within each mini-batch of stochastic gradient descent, in which case the parameters for rare classes hardly got updated with enough positive examples, while reweighing the cost function alleviates this problem in gradient computation. On the other hand, reweighing didn’t seem to help CENet, which is predictable as softmax classifiers are generative models, which works best if the prior knowledge of the data is correctly exploited. Also surprisingly, hierarchical classification scheme didn’t work well on this dataset. This might suggest that the major challenge of the dataset is the distinction between some frequent class versus some infrequent ones, rather than among classes with similar frequency in the training set, in the sense that compared to CENet, the drop in performance resulted from the network’s feature extraction capability misused on minor discriminations. These observations lead to potential future work directions on this dataset described in Section 6.

5. INCORPORATION OF LINGUISTIC FEATURES & ANALYSES

After baselining, we chose the standard softmax network, amongst others, as the baseline model for further analysis.

3http://www.cs.toronto.edu/~tijmen/gnumpy.html
4For SVMNet we also attempted to use larger minibatches, but increasing minibatch didn’t improve the performance of the network, either, before we ran out of GPU memory.
However, by the time of the completion of this report, the optima unreachable with simple optimization algorithms. When first-order gradient descent based methods are applied, it els, but for highly non-linear models such as DNNs where information. This might not be generally true for most mod-tima faster for the classification task with the help of extra local optima the softmax network alone achieves is possi-ability. The potential logic behind such systems is that the should reduce overfitting and improve model generalization called multitask learning systems (MTNet), which generally sure that linguistic features are taking part in the represen-tion systems. We've demonstrated that with the incorpo-ration of the DNN. Technically speaking, such models are developed a second network structure where the linguistic features were fed into each hidden layer as well as the output layer of the DNN, forcing each layer to accommodate the raw linguistic features when trying to minimize the model cost function (CENet-A2). The results from the models with linguistic feature incorporation are shown in Table 2, where the CENet results are also shown as a baseline. Finally, we also attempted to train a DNN model that also predicts the linguistic feature themselves alongside the senone labels, which resembles an autoencoder in some ways, with the hope that this kind of structure can help us make sure that linguistic features are taking part in the representation of the DNN. Technically speaking, such models are called multitask learning systems (MTNet), which generally should reduce overfitting and improve model generalization ability. The potential logic behind such systems is that the local optima the softmax network alone achieves is possi-ibly not as good as that for the multitasking network, or the dynamics of the latter could lead to a better local op-tima faster for the classification task with the help of extra information. This might not be generally true for most mod-els, but for highly non-linear models such as DNNs where first-order gradient descent based methods are applied, it seems more reasonable to assume the existence of better lo-cal optima unreachable with simple optimization algorithms. However, by the time of the completion of this report, the complicated multi-task cost function significantly worsened the performance of the network on the original senone class-ification task. Though not much substantial improvements were achieved, this part of the project did suggest one of the future direction of our work.

From Table 2 it can be seen that the extra linguistic features did improve the classification accuracy of the senones, but it would be of interest to more closely examine how the features worked, and how much each individual type of extra information helped.

To perform error analysis on our models, the 8,986 senones are mapped back to their 46 different center phones, and the confusion matrix of these phones are shown in Fig. 3 top row (left). With this confusion matrix for the baseline CENet model, we can tell that the DNN is already perform-ing impressively to correctly classify most of the phones, although some major anomalies do attract our attention. The most significant anomaly is that a major number of classifi-cation errors happened when spoken noise (spn), non-spoken noise (nsn), as well as in-word pause (lau) were misclassified as silence (sil), and in fact it is observed that a lot other phones are misclassified to silence as well. This is likely to result from the imbalanced distribution of the phones in speech, where silence appear in most utterances while spe-cific phones appear much less. Some other observations in-clude misclassifications of en as n, confusion among k, g, p, and l between eh and ae, between z and s, as well as other common mispronunciations and mishearings that occur in speech. After the incorporation of linguistic features, the major results (confusion matrix) are similar, the change of the confusion matrix is analyzed instead. As it turned out, one of the improvements is that ah’s are significantly less recognized as ae. Other improvements include better differ-entiations between s and z, among eh, aw, ay, and ae, and among tailing consonants (t, d, n, m, etc). While intuitively the confusion of vowels might be more related to dialectic regions, the pronunciation habit of tailing consonants might also trace back to the speaker’s age or educational level. Next, we analyzed the feature effectiveness of the CENet-A model by plotting the average squared second norm of the weights for each class of linguistic features that were fed into the network. With the average value of all first-layer features plotted in dashed line and its one-standard-deviation range plotted in dotted line, it can be shown that age, dialectic region, and educational level are the most contributive linguis-tic features in this network, which endorses our reasoning in the analyses of confusion matrices. Identity and topical in-formation helped less in this task, which probably results from their sparsity across the dataset compared to the top three. To our surprise, gender information seems very un-helpful in this task, which suggests that the acoustic features that we use have successfully removed gender-related infor-mation in the transform, or that gender-related variabilities in the input is less of a problem given the representational power of deep neural networks.

6. CONCLUSION & FUTURE WORK

In this course project, we examined the effectiveness of various deep learning models with controlled experiments, and applied linguistic features to the softmax network, improving its performance in acoustic modeling, a crucial part and performance bottleneck of state-of-the-art speech recog-nition systems. We’ve demonstrated that with the incorpo-
ration of linguistic information when available, the performance of acoustic models can be improved, and analyzed the importance of each of the features.

One of the next steps of this project should intuitively be applying the linguistic feature-augmented deep neural networks to the full model of speech recognition, and examine whether word error rate could be lowered as a result.

Another potential future direction comes from our experience and observations during the project. While undertaking experiments for the project, the major bottlenecks for us were the efficiency for learning the deep neural networks, for which stochastic gradient descent is applied in line with the field of active research. However, our discoveries with large-margin cost functions as well as multi-task networks might suggest that we should research for more efficient and effective learning algorithms for deep learning models with a large number of parameters on such huge amount of data.

Finally, a potential future direction specific to speech recognition (and perhaps machine learning tasks with similar natures) is to apply structured classifiers to the DNN acoustic model. As was observed in our hierarchical classification task, if the representational capacity of the network is “wasted” on non-significant discrimination tasks, the model effectiveness would deteriorate. However, we would expect substantial improvement if such hierarchical information is used correctly. Specifically, we would like to apply the intuitive hierarchy that exists among the senone classes as a tree-structure classification target, where not only the task of the network is the discrimination of the senones themselves, but also their center-phones can be taken into account. We expect to see an improvement in senone classification accuracy as a result.

Acknowledgements
We would like to thank Prof. Ng for his in-class instruction, and the TAs for their feedback on this project. We would also like to thank Andrew Maas, Awni Hannun, and Chris Lengerich from the Stanford Deep Learning for Speech Recognition Group for providing source of data, for their insightful comments as well as helpful discussions.

7. REFERENCES