
Identifying Tags from millions of text question
Chintan Parikh, chintanp@stanford.edu

Abstract—Identifying tags or keywords from text has been a

very important class of application of text data mining. In the
case of Questions and Answer sites such as Stack overflow or
Quora tagging allows users to explore more related content,
build and showcase expertise in a given area and in general get
more visibility to the question at hand. In this paper I take on
the problem of identifying tags for the questions asked at
Stack exchange sites based on title and text of the question.
For this problem Vowpal Wabbit is used as a tool to build set
of discriminative classifiers for each of the tags in the training
set. The resulting tags for each of test questions are predicted
using running through each of the classifiers.

Index Terms—Machine Learning, Clustering, Keyword
extraction, Text Analysis

I. BACKGROUND AND MOTIVATION
Tagging has become popular way to categorize text and

non-text information. With the advent of twitter hashtags,
people have started promoting usage of tags in order to
categorize and find related content easily. Stack overflow is a
popular site for discussing programming related questions, and
now they have dataset of over 6 million questions. On stack
overflow a user can tag each questions up to five tags to
categorize a question, using existing tags or create a new tag in
certain cases. Although they restrict ability to create a new tags
by having requirement on certain reputation.

In this problem, I look at dataset obtained from Kaggle

competition [1] which contains questions and related tags from
Stack Exchange sites in the training set. The training dataset
has over 6 million questions with associated 42,049 unique
tags. Each question has average of 2.9 tags associated with it.
Figure 1 shows one example of training set with its associated
tags.

Figure 1:Question with tags (c#, asp.net-mvc, linq, lambda)

The problem statement is to predict the tags for the test set

of over 2 million questions using only the model learned from
the training set.

Top ten tags sorted by their frequency are shown in table 1.

The top 10 tags account for 17.26% of all the tags. Similarly
when analyzing top 100 tags they account for around 40% total
tags. This follows perfect power law distribution as shown in
figure 2.

Figure 2: Tag distribution

Tags Times occurrence Percentage

occurrence
c# 463,526 2.66
java 412,189 2.36
php 392,451 2.25
javascript 365,623 2.1
android 320,622 1.84
jquery 305,614 1.75
c++ 199,280 1.14
python 184,928 1.06
iPhone 183,573 1.05
asp.net 177,334 1.02

Table 1: Top ten tags

 Page 2

II. APPROACH
This section details the approach tried out for predicting the

tags for each of the question. In this discussion I take Top500
tags into account as they account for 61.8% of all the tags and
also it speeds up the process of testing multiple hypothesis.

A. Setting up the baseline:
Kaggle has supplied with multiple baselines for comparing

the results, one with mean F1 score of 0.07 where it predicts
top 5 tags (c#, java, python, php and javascript) for all the tags.
For setting up another naïve baseline, first the data set was
cleaned removing XML tags, punctuation text and common
stop words in English language using Natural Language
Toolkit [3]. This was tokenized and feed through a simple
classifier, which searches the post for the Tag keywords and if
they are present then predicts that tag. This is then aggregated
and then finally selects the top three tags for each of the
question. This approach results in mean F1 score of 0.19.

B. Building discriminative classifiers

Two approaches were identified for tag prediction for the
questions, one was to build a global multiclass classifier and
then use method such as One vs All to select the final class.
The second approach was to build a discriminant classifier for
each of the tags and then predict the final tags choosing the
most likely tags. Since we need to predict more than one tags
for each of the question, it was decided to use the second
approach. The block diagram below explains the approach.

Figure X: Training of classifier for each tag

To build a discriminative classifier Vowpal Wabbit (vw) [4]

was selected. It provides several loss functions as well as
learning algorithms. vw provides a sparse matrix input format
which easily allows a bag of words models. Also vw hashes

the features names to 2^18-1 space, there in reducing the
dimension and allows faster lookups.

Feature Selection:
The feature selection was done using vw wrapper called

as vw-varinfo, which exposes all variables of models in a
human readable form. The output includes the input variable
names, including name-spaces where applicable, the vw hash
value, the range [min, max] of the variable values in the
training-set, the final model (regressor) weight, and the
relative distance of each variable from the best constant
prediction.

Using this, we learn the relative importance of the words
and we can remove the features with 0% relative importance,
so as to reduce model size. Table below shows the feature
vectors for the model for c#.

Feature Rel score Feature Rel score
c# 100.00% qt -80.51%
initquestion 100.00% autoslideinterval -76.03%
winform 54.71% andriod -76.03%
copypathlist 51.33% printf -72.89%
xmldocument 46.29% xcode -70.12%
addin 43.13% rails -67.70%
button_neutral 43.04% wikiversity -65.32%
csharp 40.42% gcc -65.32%
enumerable 39.48% boost -62.96%
containskey 38.08% java -61.70%

Table 2: Relative importance of features for C# classifier

Choosing loss function:
For the classification task, vw has support for two loss

functions namely ‘hinge’ (SVM) and ‘logistic’. The
parameters The default values of regularization and learning
rate of 0.1 gives the best result for SVM classifier. Figure 3
and 4, compares the performance on SVM and logistic
classifiers, on the metric of Precision and Recall for the
classifier built for Top 100 tags.

Choosing input samples for building models
The SVM classifiers are sensitive to the ratio of positive (M)

training documents and negative (K) training documents. A
previous study [5] suggests that a discriminative model
produces the result for a class that has 60 positive and 1500
negative examples. In the initial phase of training, this fixed
value was being used to create training set for each of the
classifiers. But the total sample size of 2100 was not sufficient
to capture and it has high variance.

The approach which was implemented in the final classifier,

which gave the maximum precision and recall is discussed
below,

 Page 3

 Figure 3: Logistic loss function, mean P = 0.64, R = 0.42

Figure 4: Hinge loss function, mean P = 0.76, R = 0.72

For	 each	 of	 the	 tags:	
-‐	 Get	 the	 occurrence	 value	 (O).	 	
-‐	 Choose	 M	 to	 be	 O/2;	 K	 to	 be	 25*M	
-‐	 Each	 M	 and	 K	 are	 chosen	 from	 the	 question	 which	 has	

more	 than	 800	 characters	 so	 as	 to	 have	 enough	
information	 in	 the	 model.	 	

C. Tag Suggestion
Once we have the models built for each of the Top500

tags, next step is to predict multiple tags for each of the
question. For this we use the algorithm as below,

Step	 1:	 For	 each	 question	 in	 the	 test	 set:	
-‐	 Run	 through	 all	 the	 classifiers	 in	 Top500	 set	
-‐	 Add	 the	 SVM	 output	 of	 each	 classifier	 to	 a	 list	 	 	
Step	 2:	 Now	 sort	 the	 list	 to	 get	 the	 maximum	 5	 output	

for	 particular	 question,	 and	 assign	 these	 tags	 to	 the	
question.	 	

The output of vw classifier is between -1 and 1, we choose

the top 5 values which are above a fixed threshold (set to 0.1)
in the list as our final tag output.

III. RESULTS
From the above section it is clear that hinge loss function

performs much better than the logistic loss function, hence it
was used in the final classifier.

A. Evaluation metric:
Mean F1 score is used as evaluation metric, which

measures accuracy using statistics precision p and recall r.
Precision is the ratio of true positive (tp) to all predicted
positive (tp+ fp). Recall is ratio of true positive (tp) to all
actual positives (tp + fn).

F1 = 2pr / p + r

So in order to maximize the F1 score, the algorithm

should maximize both recall and precision simultaneously.

 Page 4

B. Some results from the tag suggestion

Original Tags Suggested Tags
Php, image-proecessing, file-
upload, upload, mime-types

Image, file, php

Firefox Firefox, windows
R, matlab, machine-learning Ubuntu, apache, networking
C#, url, encoding C#, string, json
Php, api, file-get-contents Php, api, file
Core-plot Ios, iphone
C#, asp.net, windows-phone-
7

Windows, asp.net, c#

.net, javascript, code-
generatio

Javascript, c#, linq

Visual-studio, makefile, gnu Visual-studio, file
Html, semantic, line-breaks Html

Table 3: Original and suggested tags for questions from

test set

Note in the above results, the tags are predicted from the

Top500 tags classifier set.
We can set that the top tags such as c#, php are being

predicted with a very high accuracy, where as lower
occurring tags which are not part of the Top500 tags are
missed or being predicted with some synonym from the
Top500 set. The example for that being makefile -> file,
windows-phone-7 -> windows.

C. Classifiers performance
From the figure 4 we see that we can build a fairly

accurate classifier with a mean Precision of 0.76 and Recall
of 0.72. This value is obtained from Test set of 100,000
samples which were not part of the training set.

The tags for which the precision was lowest in the

Top100 set were; file, windows, forms, list, api, oop, class.
The precision and recall for them is shown in the table
below.

Tag Precision Recall
File 0.2044 0.5350
Windows 0.3284 0.7286
Forms 0.3526 0.7404
List 0.2594 0.7447
Oop 0.3620 0.7159
Api 0.2142 0.7138

Table 4: Tags with lowest precision values in Top100

The classifiers in the above list have a noticeably low

precision and higher recall values. This could mean that the
algorithm is bit too liberal in making the classification
leading to lower precision values. This could be true for the
tags, which occur generically in the context of multiple tags.

For example, api, list, file. This could have multiple
connotations and don’t particularly belong to a particular
language or a tag set.

D. Suggested tags performance
To measure the performance of the entire algorithm to

predict the suggested tags, we run through the test set of
100,000 samples through Top500 classifier set. Following is
the result from the run

TP = 53219 P = 0.6439
FP = 29426 R = 0.2551
FN = 206221 F1 = 0.3648

Table 5: Final result of F1score

The low recall is some what expected, as we are not

classifying from the entire set of 43k tags.

E. Kaggle Submission:
The algorithm described in the above section was

submitted to the Kaggle, where the test set contains over 2
million test question. The competition is particularly intense,
as Facebook is conducting it for recruiting. The competition
ends on 12/20/2013 and as of 12/12 the algorithm described
above had the standing of 74th out of 310 total teams.

The mean F1 score of the submission using the methods

describe above was 0.71132 compared to the top of 0.81539.
Note the high values of F1 score compared to above result
are largely due to overlap of Test set in the Training data set.
Thus for the questions in Test set if they belonged in
Training set, then the same tags were predicted for them.

IV. CONCLUSION
Vowpal Wabbit was used extensively in the development

of classifiers and its sparse input format, hashing trick and
particularly vw-varinfo wrapper had been very useful to
debug the models and come up with valid features. The
hinge loss function works much better than logistic loss
function.

As discussed in the earlier sections, it is possible to build

highly accurate classifier for each of the tags in the Training
set. The precision is higher for specific tags such as php,
python and it decreases for generic tags such as file, java etc.
The results show that average precision of 0.76 is obtained
for the tags in Top500 set. The recall is particularly low in
the results, since we are not predicting tags from the entire
tag set.

V. FUTURE WORK
The next immediate thing to try out it to build a set of

Top2000, Top10000 and all the tags and see how the

 Page 5

Precision and Recall values vary. The expectation is that
mean F1 score should go up by few percentage points.

The other thing to try out could be to add more features

so as to improve accuracy of the existing Top500 tags. Also
could look at techniques such as LDA to give us a list of
topics for documents, which could be, then used a feature.

REFERENCES
[1] Kaggle competition Facebook, Keyword Extraction

http://kaggle.com/c/facebook-recruiting-iii-keyword-
extraction

[2] Kaggle leaderboard,
http://www.kaggle.com/c/facebook-recruiting-iii-
keyword-extraction/leaderboard

[3] Bird, Steven, Edward Loper and Ewan Klein (2009),
Natural Language Processing with Python. O’Reilly
Media Inc.

[4] J. Langford, L. Li, and A. Strehl. Vowpal wabbit online
learning project, http://hunch.net/?p=309, 2007.

[5] Wang Jian, Davidson Brian, Explorations in tag
suggestion and query expansion,” in Proceedings of the
2008 ACM workshop on Search in social media, ser.
SSM ’08. New York, NY, USA: ACM, 2008, pp.

[6] Saha A, Saha R, Schineider K, A discriminative model
approach for suggesting tags

