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Abstract—Identifying tags or keywords from text has been a 

very important class of application of text data mining. In the 
case of Questions and Answer sites such as Stack overflow or 
Quora tagging allows users to explore more related content, 
build and showcase expertise in a given area and in general get 
more visibility to the question at hand. In this paper I take on 
the problem of identifying tags for the questions asked at 
Stack exchange sites based on title and text of the question. 
For this problem Vowpal Wabbit is used as a tool to build set 
of discriminative classifiers for each of the tags in the training 
set. The resulting tags for each of test questions are predicted 
using running through each of the classifiers.  

Index Terms—Machine Learning, Clustering, Keyword 
extraction, Text Analysis 

I. BACKGROUND AND MOTIVATION 
Tagging has become popular way to categorize text and 

non-text information. With the advent of twitter hashtags, 
people have started promoting usage of tags in order to 
categorize and find related content easily. Stack overflow is a 
popular site for discussing programming related questions, and 
now they have dataset of over 6 million questions. On stack 
overflow a user can tag each questions up to five tags to 
categorize a question, using existing tags or create a new tag in 
certain cases. Although they restrict ability to create a new tags 
by having requirement on certain reputation.  

 
In this problem, I look at dataset obtained from Kaggle 

competition [1] which contains questions and related tags from 
Stack Exchange sites in the training set. The training dataset 
has over 6 million questions with associated 42,049 unique 
tags. Each question has average of 2.9 tags associated with it. 
Figure 1 shows one example of training set with its associated 
tags.  

 

 
Figure 1:Question with tags (c#, asp.net-mvc, linq, lambda)  

 
The problem statement is to predict the tags for the test set 

of over 2 million questions using only the model learned from 
the training set.  

 
Top ten tags sorted by their frequency are shown in table 1. 

The top 10 tags account for 17.26% of all the tags. Similarly 
when analyzing top 100 tags they account for around 40% total 
tags. This follows perfect power law distribution as shown in 
figure 2. 

 

 
Figure 2: Tag distribution 

 
 
 
Tags Times occurrence Percentage 

occurrence  
c# 463,526 2.66 
java 412,189 2.36 
php 392,451 2.25 
javascript 365,623 2.1 
android 320,622 1.84 
jquery 305,614 1.75 
c++ 199,280 1.14 
python 184,928 1.06 
iPhone 183,573 1.05 
asp.net 177,334 1.02 

 
Table 1: Top ten tags 
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II. APPROACH 
This section details the approach tried out for predicting the 

tags for each of the question. In this discussion I take Top500 
tags into account as they account for 61.8% of all the tags and 
also it speeds up the process of testing multiple hypothesis.  

 
A. Setting up the baseline: 
Kaggle has supplied with multiple baselines for comparing 

the results, one with mean F1 score of 0.07 where it predicts 
top 5 tags (c#, java, python, php and javascript) for all the tags.  
For setting up another naïve baseline, first the data set was 
cleaned removing XML tags, punctuation text and common 
stop words in English language using Natural Language 
Toolkit [3]. This was tokenized and feed through a simple 
classifier, which searches the post for the Tag keywords and if 
they are present then predicts that tag. This is then aggregated 
and then finally selects the top three tags for each of the 
question. This approach results in mean F1 score of 0.19.  

  
B. Building discriminative classifiers  

Two approaches were identified for tag prediction for the 
questions, one was to build a global multiclass classifier and 
then use method such as One vs All to select the final class. 
The second approach was to build a discriminant classifier for 
each of the tags and then predict the final tags choosing the 
most likely tags. Since we need to predict more than one tags 
for each of the question, it was decided to use the second 
approach. The block diagram below explains the approach.  

 

  
Figure X: Training of classifier for each tag 

 
To build a discriminative classifier Vowpal Wabbit (vw) [4] 

was selected. It provides several loss functions as well as 
learning algorithms. vw provides a sparse matrix input format 
which easily allows a bag of words models. Also vw hashes 

the features names to 2^18-1 space, there in reducing the 
dimension and allows faster lookups. 

 
Feature Selection:  
The feature selection was done using vw wrapper called  

as vw-varinfo, which exposes all variables of models in a 
human readable form. The output includes the input variable 
names, including name-spaces where applicable, the vw hash 
value, the range [min, max] of the variable values in the 
training-set, the final model (regressor) weight, and the 
relative distance of each variable from the best constant 
prediction. 
 

Using this, we learn the relative importance of the words 
and we can remove the features with 0% relative importance, 
so as to reduce model size.  Table below shows the feature 
vectors for the model for c#.  

 
Feature  Rel score Feature Rel score 
c# 100.00% qt -80.51% 
initquestion 100.00% autoslideinterval -76.03% 
winform 54.71% andriod -76.03% 
copypathlist 51.33% printf -72.89% 
xmldocument 46.29% xcode -70.12% 
addin 43.13% rails -67.70% 
button_neutral 43.04% wikiversity -65.32% 
csharp 40.42% gcc -65.32% 
enumerable 39.48% boost -62.96% 
containskey 38.08% java -61.70% 

 
Table 2: Relative importance of features for C# classifier 

 
Choosing loss function:  
For the classification task, vw has support for two loss 

functions namely ‘hinge’ (SVM) and ‘logistic’. The 
parameters The default values of regularization and learning 
rate of 0.1 gives the best result for SVM classifier. Figure 3 
and 4, compares the performance on SVM and logistic 
classifiers, on the metric of Precision and Recall for the 
classifier built for Top 100 tags.  

 
Choosing input samples for building models 
The SVM classifiers are sensitive to the ratio of positive (M) 

training documents and negative (K) training documents. A 
previous study [5] suggests that a discriminative model 
produces the result for a class that has 60 positive and 1500 
negative examples. In the initial phase of training, this fixed 
value was being used to create training set for each of the 
classifiers. But the total sample size of 2100 was not sufficient 
to capture and it has high variance.  

 
The approach which was implemented in the final classifier, 

which gave the maximum precision and recall is discussed 
below,  
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    Figure 3: Logistic loss function, mean P = 0.64, R = 0.42 
 

Figure 4: Hinge loss function, mean P = 0.76, R = 0.72 
------------------------------------------------------------------- 
For	  each	  of	  the	  tags:	  
-‐	  Get	  the	  occurrence	  value	  (O).	  	  
-‐	  Choose	  M	  to	  be	  O/2;	  K	  to	  be	  25*M	  
-‐	  Each	  M	  and	  K	  are	  chosen	  from	  the	  question	  which	  has	  

more	   than	   800	   characters	   so	   as	   to	   have	   enough	  
information	  in	  the	  model.	  	  

------------------------------------------------------------------- 
 
C. Tag Suggestion 
Once we have the models built for each of the Top500 

tags, next step is to predict multiple tags for each of the 
question. For this we use the algorithm as below,  

 
------------------------------------------------------------------- 
Step	  1:	  For	  each	  question	  in	  the	  test	  set:	  
-‐	  Run	  through	  all	  the	  classifiers	  in	  Top500	  set	  
-‐	  Add	  the	  SVM	  output	  of	  each	  classifier	  to	  a	  list	  	  	  
Step	  2:	  Now	  sort	  the	  list	  to	  get	  the	  maximum	  5	  output	  

for	   particular	   question,	   and	   assign	   these	   tags	   to	   the	  
question.	  	  

------------------------------------------------------------------- 
	  

 
The output of vw classifier is between -1 and 1, we choose 

the top 5 values which are above a fixed threshold (set to 0.1) 
in the list as our final tag output.   

 

III. RESULTS 
From the above section it is clear that hinge loss function 

performs much better than the logistic loss function, hence it 
was used in the final classifier.  

 
A. Evaluation metric:  
Mean F1 score is used as evaluation metric, which 

measures accuracy using statistics precision p and recall r. 
Precision is the ratio of true positive (tp) to all predicted 
positive (tp+ fp). Recall is ratio of true positive (tp) to all 
actual positives (tp + fn).  

 
F1 = 2pr / p + r 
 
So in order to maximize the F1 score, the algorithm 

should maximize both recall and precision simultaneously.  
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B. Some results from the tag suggestion 
 

Original Tags Suggested Tags 
Php, image-proecessing, file-
upload, upload, mime-types 

Image, file, php 

Firefox Firefox, windows 
R, matlab, machine-learning Ubuntu, apache, networking 
C#, url, encoding C#, string, json 
Php, api, file-get-contents Php, api, file 
Core-plot Ios, iphone 
C#, asp.net, windows-phone-
7 

Windows, asp.net, c# 

.net, javascript, code-
generatio 

Javascript, c#, linq 

Visual-studio, makefile, gnu Visual-studio, file 
Html, semantic, line-breaks Html 

 
Table 3: Original and suggested tags for questions from 

test set    
 
Note in the above results, the tags are predicted from the 

Top500 tags classifier set. 
We can set that the top tags such as c#, php are being 

predicted with a very high accuracy, where as lower 
occurring tags which are not part of the Top500 tags are 
missed or being predicted with some synonym from the 
Top500 set. The example for that being makefile -> file, 
windows-phone-7 -> windows. 

  
C. Classifiers performance 
From the figure 4 we see that we can build a fairly 

accurate classifier with a mean Precision of 0.76 and Recall 
of 0.72. This value is obtained from Test set of 100,000 
samples which were not part of the training set.  

 
The tags for which the precision was lowest in the 

Top100 set were; file, windows, forms, list, api, oop, class. 
The precision and recall for them is shown in the table 
below.  

 
Tag Precision Recall 
File 0.2044 0.5350 
Windows 0.3284 0.7286 
Forms 0.3526 0.7404 
List 0.2594 0.7447 
Oop 0.3620 0.7159 
Api 0.2142 0.7138 

 
Table 4: Tags with lowest precision values in Top100 
 
The classifiers in the above list have a noticeably low 

precision and higher recall values. This could mean that the 
algorithm is bit too liberal in making the classification 
leading to lower precision values. This could be true for the 
tags, which occur generically in the context of multiple tags. 

For example, api, list, file. This could have multiple 
connotations and don’t particularly belong to a particular 
language or a tag set.  

 
D. Suggested tags performance 
To measure the performance of the entire algorithm to 

predict the suggested tags, we run through the test set of 
100,000 samples through Top500 classifier set. Following is 
the result from the run 

  
TP = 53219 P = 0.6439 
FP = 29426 R = 0.2551 
FN = 206221 F1 = 0.3648 

 
Table 5: Final result of F1score  
 
The low recall is some what expected, as we are not 

classifying from the entire set of 43k tags. 
 
E. Kaggle Submission: 
The algorithm described in the above section was 

submitted to the Kaggle, where the test set contains over 2 
million test question. The competition is particularly intense, 
as Facebook is conducting it for recruiting. The competition 
ends on 12/20/2013 and as of 12/12 the algorithm described 
above had the standing of 74th out of 310 total teams.  

 
The mean F1 score of the submission using the methods 

describe above was 0.71132 compared to the top of 0.81539. 
Note the high values of F1 score compared to above result 
are largely due to overlap of Test set in the Training data set. 
Thus for the questions in Test set if they belonged in 
Training set, then the same tags were predicted for them. 

 

IV. CONCLUSION 
Vowpal Wabbit was used extensively in the development 

of classifiers and its sparse input format, hashing trick and 
particularly vw-varinfo wrapper had been very useful to 
debug the models and come up with valid features. The 
hinge loss function works much better than logistic loss 
function.  

 
As discussed in the earlier sections, it is possible to build 

highly accurate classifier for each of the tags in the Training 
set. The precision is higher for specific tags such as php, 
python and it decreases for generic tags such as file, java etc. 
The results show that average precision of 0.76 is obtained 
for the tags in Top500 set. The recall is particularly low in 
the results, since we are not predicting tags from the entire 
tag set.  

 

V. FUTURE WORK 
The next immediate thing to try out it to build a set of 

Top2000, Top10000 and all the tags and see how the 
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Precision and Recall values vary. The expectation is that 
mean F1 score should go up by few percentage points.  

 
The other thing to try out could be to add more features 

so as to improve accuracy of the existing Top500 tags. Also 
could look at techniques such as LDA to give us a list of 
topics for documents, which could be, then used a feature.   
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