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Abstract

The presence of increasingly advanced sensors on modern
smartphones provides the opportunity to leverage sensor data
to enhance the user experience with biometric security fea-
tures and user-targeted advertising. As a first step towards
achieving this goal, we attempt to determine several key user
traits based on smartphone accelerometer and gyroscrope
data collected while the user walks with the device in his
or her pants pocket. We chose to analyze data collected from
the pants pocket because it is one of the most likely locations
that a user would place the device. The traits we initially at-
tempted to predict were weight, height and gender. However,
we fortuitously discovered that we could identify individual
users from their gait data with a high degree of accuracy.
We approached predicting weight and height as classification
problems (with the classes being small, medium and large)
rather than regression problems because precision and recall
are frequently much easier to interpret than mean squared
error or mean absolute error.
To accomplish this task, we extracted and analyzed a variety
of features from the sensor data. The features ranged from
basic metrics, such as the mean and standard deviation of
accelerometer readings, to the coefficients of a Fast Fourier
Transform. By applying several classification methods, we
were able to predict the weight, height, gender and identity
of a smartphone user with leave-one-out cross validation ac-
curacies of 57%, 56%, 83% and 96%, respectively.

1 Introduction

Smartphones are powerful computing devices owned by over
50% of American adults [1]. As devices that are almost al-
ways within reach, smartphones provide instant access to a
wealth of content. Indeed, smartphones connect us to others,
put the internet at our fingertips and even stream live video.
The way we interact with smartphones is as interesting as the
content they deliver. Smartphones are one of the few inter-
active devices that we frequently carry in a non-interactive
manner. This made us wonder, while smartphones are clearly
consummate content deliverers during periods of use, can they
be capable content gatherers during periods of inactivity? In
this paper, we investigate the application of machine learn-
ing techniques to determine the weight, height, gender and
identity of a smartphone user while the device remains in its
user’s pocket.
There are a number of applications to which the weight,
height, gender or identity of a smartphone user would be par-
ticularly useful. A straight-forward application would be to
fitness trackers (e.g. estimating calories burned, metabolic

rate, etc.), but there are others as well. For example, with
this additional information, website and app advertisements
could target users more effectively, potentially increasing the
likelihood of a click-through. Further, when navigating to a
clothing retailer’s website, the smartphone user could auto-
matically be directed to the appropriate section (men’s or
women’s) where items have been pre-selected for the user
based on his/her weight and height. Additionally, the ability
to recognize individual users could enhance both the security
and convenience of the device by sending an alert if an unau-
thorized user is carrying the phone or remaining unlocked if
an authorized user is carrying the device. The rise of the
smartphone as a powerful computing device generally carried
on one’s person provides the potential of broadening the use of
accelerometer and gyroscope data beyond traditional gaming
applications to improve the user experience in general.

2 Discussion of prior work

In recent years, there has been significant research on apply-
ing machine learning techniques to smartphone sensor data.
Much of this research has focused on activity recognition
[2, 3, 8] (e.g. determining if a smartphone user is standing,
walking, running or biking) and, more recently, user iden-
tification [4, 5] (e.g. using the sensor data as a biometric).
However, there has been considerably less research on using
smartphone sensor data to identify general user characteris-
tics such as weight, height and gender.
Our work on identifying individual users is most comparable
to the wearable sensor-based recognition research discussed
by Gafurov [12], while our work on identifying weight, height
and gender is most similar to the research conducted by Weiss
and Lockhart [6]. Weiss and Lockhart, however, focused only
on classifying the extremes of the population (e.g. “short”
v. “tall” and “light” v. “heavy”). They did not attempt to
classify people of average weight and height and, thus, did not
include examples of “average” people in their training or test
sets. Additionally, Weiss and Lockhart used solely accelerom-
eter data in their analysis whereas we incorporated gyroscope
data as well.

3 The data

3.1 Overview

Our data set consists of a combination of smartphone gait
data from two unique sources. Initially, we began prototyping
our learning algorithms using data obtained from the Human
Activity Sensing Consortium (HASC) [7]. This data set was
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a unique fit for our purposes because it not only contained
sensor data for a variety of activities (including walking), but
also the weight, height and gender of each test subject. How-
ever, the HASC data was largely homogeneous. Indeed, after
extensive preprocessing of the 2012 HASC corpus, 36 sam-
ples remained of which only five were female. The distri-
butions of weight and height were similarly skewed. This
lack of diversity prompted us to develop our own web appli-
cation (http://gyro.ktam.org/) for additional data collec-
tion. We subsequently made recording one’s gait data a task
on Amazon Mechanical Turk for expedient data collection (we
denote the resulting data set TURK). When collecting data
we specified a specific orientation of the device (pointed down-
ward in the user’s front pant pockets with the screen facing the
user’s leg). For consistency, we also filtered the HASC data
to only consist of gait data with the same device orientation.
From our integrated data source we eliminated examples with
fewer than fifteen seconds of gait data. We then considered
only the middle ten seconds of the time series to remove the
data that was collected as the device was being transferred to
and from the user’s pocket.

3.1.1 Predicting weight, height and gender

We wanted to include features from both the gyroscope and
accelerometer data when predicting weight, height and gen-
der. While the TURK data set and 2012 HASC corpus con-
tain data from both the accelerometer and gyroscope sensors,
HASC data from previous years contains only accelerometer
data. Consequently, our integrated data set for predicting
weight, height and gender consisted of 144 examples in total
(108 examples from the TURK data and 36 from the 2012
HASC corpus).

3.1.2 Identifying individual users

The TURK data does not contain multiple instances of gait
data from the same individual. Thus, we could not use this
data to identify individual users. Accordingly, we decided to
supplement the 2012 HASC corpus with the 2011 HASC cor-
pus. The 2011 corpus, however, does not contain gyroscope
data, so we only selected features from the accelerometer data
when performing our analysis. When identifying users, we
considered two orientations of the device: 1) the phone was
mounted on the waist and 2) the phone was mounted on the
waist or placed in the pant pocket. The former is a classifica-
tion task with 75 unique individuals while the latter has 169
unique individuals.

3.2 Distribution of weight, height and gen-
der

Even after supplementing the 2012 HASC corpus with the
TURK data, the distribution of gender was still heavily
skewed towards males. Of the 144 individuals, 107 were male
(74%) and 37 were female (26%). We discretized weight and
height into three classes each (small, medium and large) ac-
cording to the following table:

We choose these cutoffs to be similar to those employed by
Weiss and Lockhart [6], so our results would be able to be

Small Medium Large
Weight (kg) < 65 [65, 80) ≥ 80
Height (cm) < 165 [165, 180) ≥ 180

compared when we eliminate the medium class from our data
and predict on only small and large individuals. This dis-
cretization resulted in a fairly even distribution of weight
among the three classes (33.3% were considered small, 39.6%
medium and 27.1% large). The discretiztion of height, on the
other hand, was uneven with 27.7% considered small, 54.9%
medium and 17.4% large. The discretization of height proved
to be more difficult since its distribution in our data set was
much tighter than that of weight. So there was a trade off
between giving different labels to individuals that only differ
in height by one or two centimeters, or having distinct classes
that do not have an evenly distributed number of individuals
in each class. Ultimately, we elected to have distinct classes as
this provided the benefit of being able to compare our results
to those of Weiss and Lockhart [6].

Figure 1: Plot of accelerometer data

4 Learning

4.1 Feature extraction

As a preprocessing step, we applied a median filter and a 3rd
order low-pass Butterworth filter with a corner frequency of
20 Hz to remove noise from the accelerometer and gyroscope
signal [8]. 20 Hz is an appropriate corner frequency since 99%
of the energy associated with human gait is contained below
15 Hz [8]. We subsequently applied another low-pass Butter-
worth filter with a corner frequency of 0.3 Hz to separate the
acceleration signal into body and gravity components as this
has shown to be successful in prior work [8].

We then drew 49 features from the filtered accelerometer
and gyroscope signals. These features were derived from the
time and frequency domains and were selected largely on the
basis of prior work in activity recognition and gait identifica-
tion [8, 9]. A tabular summary of our time features can be
found in Figure 2. Our frequency features were drawn from
the total acceleration series and consist of DC component,
signal energy, dominant frequency and coefficients sum.
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Feature Acceleration Gyroscope
Mean Xb,g,j , Yb,g,j , Zb,g,j ,T βb

Std Dev Xb,g,j , Yb,g,j , Zb,g,j βb
Dist btwn peaks Yb βb

Max point Xb, Yb, Zb βb
Min point Yb βb

Mean square Xb, Yb, Zb βb

Figure 2: Selected Time Domain Features. X, Y, and Z refer
to the components of acceleration, T refers to the magnitude
vector of acceleration, and β refers to the β rotational com-
ponent. Subscripts b and g refer to the Body and Gravity
components while j refers to the Jerk signal.

4.1.1 Time Domain

We first considered features in the time domain. Most of
our features were drawn directly from filtered time series, but
some were drawn from the derivative time series. These in-
clude the mean, standard deviation, maximum, minimum and
root mean square of acceleration, jerk and gyroscope signals
as well as the sequence of acceleration magnitudes. An ad-
ditional feature we included was the length of the gait cycle
(the elapsed time between consecutive contacts of a single leg
with the ground). A typical gait cycle is shown in Figure
1. From the vertical component of acceleration we extracted
amax and amin, the maximum and minimum values of vertical
acceleration in a single gait cycle, to compute 4

√
amax − amin

which has been shown to be proportional to step-size (which
is proportional to height) [10]. We hoped that this feature
would be predictive of height.

4.1.2 Frequency Domain

We also considered several features in the frequency domain.
We first sampled the total acceleration time signal in fixed-
width sliding windows of 2.5 seconds each (250 timesteps at
100 Hz), with 50% overlap between successive windows. A
window size of 2.5 seconds is suitable because the cadence of
an average person is at least 1.5 steps per second [8]. Thus,
we are able to capture close to a full walking cycle (2 steps)
in each window. We then mapped the signal samples to the
frequency domain using a Fast Fourier Transform (FFT) and
extracted the desired features using the generated coefficients.

4.2 Learning algorithms

Our primary learning algorithms were AdaBoost with deci-
sion stumps and Linear Discriminant Analysis (LDA), both
of which were selected because they are easy to generalize to
the multi-class setting (for AdaBoost, we used the SAMME.R
algorithm for multi-class classification proposed by Zhu et al.
[11] and implemented in SKLearn). AdaBoost with decision
stumps was particularly well suited to our analysis because
it inherently performs feature selection. On the other hand,
we need to perform feature selection before fitting our model
with LDA to avoid overfitting.

4.3 Selection and Importance

Gender Weight Height
Std Dev Xg Max Yb Dist btwn peaks Yb

Mean Zj Std Dev Xb Std Dev βg
DC Component Std Dev Yb Dist btwn peaks βb

Figure 3: The three most important features for each trait

We employed feature selection algorithms to both improve
the accuracy of our classifiers and gain insights into which
aspects of gait are associated with a user’s physical charac-
teristics. The three most informative features when predict-
ing weight, height and gender are shown in Figure 3. As
previously noted, we elected to use AdaBoost for predicting
weight and gender as it inherently performs feature selection.
We considered the most informative features to be the ones
that appeared most frequently in the decision stumps. On the
other hand, we used LDA for predicting height. Since LDA
does not perform feature selection on its own, we selected
important features using stability selection as described by
Meinshausen et al. and implemented in SKlearn [13].

By examining Figure 3, we notice that there does not
appear to be a set of uniformly most informative features,
but rather different features were important for each physical
characteristic. This may indicate that different aspects of gait
are more linked to different characteristics. Accordingly, we
performed our classification tasks by using separate models
for predicting each trait. We found it interesting and intu-
itive that our model for height benefited from the inclusion of
the length of the gait cycle, as taller individuals tend to take
longer strides.

5 Individual User Identification: A
Fortuitous Discovery

The HASC data set contains multiple distinct examples of
gait data per individual. Since we initially desired to classify
individuals on the basis of weight, height and gender (and
not on the basis of other confounding factors such as iden-
tity), we filtered the data to ensure that there is only one
example of gait data from each individual in either the train-
ing or test set (but never both). Initially, however, we did not
have these filters in place and our accuracies when predicting
weight, height and gender were significantly higher. This gave
us reason to believe that our previous accuracies were due to
the ability of our classifier to identify individual users.
To explore this possibility, we performed Principal Compo-
nent Analysis (PCA) to visualize the data. From the projec-
tion of the data onto the first three principal components, it is
evident that individuals form fairly distinct clusters (Figure
4). Furthermore, since the first five principal components
explain over 95% of the variance in the data, we decided
to use PCA as a dimensionality reduction technique and k-
nearest neighbors with k = 3 as our classifier. From PCA
we found that the first principal component is weighted to-
wards y-acceleration features, while the second is weighted
towards x-acceleration features. These correspond to vertical
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movement and abduction/adduction of the hips [4], respec-
tively, so it was interesting to see the principal components
weighted in this fashion.

Figure 4: Projection of gait data from 15 individuals onto
the first three principal components. Each color represents a
different individual.

6 Results

6.1 Soft Biometrics

Our results are summarized by the following confusion matri-
ces, which display our leave-one-out cross validation results
on the combined data set (HASC 2012 + TURK). Each con-
fusion matrix also shows precision and recall for each class,
which are denoted P and R, respectively. Let S,M,L denote
small, medium and large and Sa and Sp denote actual small
and predicted small. Similarly define Ma,Mp, La, Lp.

6.1.1 Gender

Malep Femalep R
Malea 99 8 93%
Femalea 17 20 54%

P 85% 71%

Figure 5: Gender

We were able to identify users’ gender with a high degree of
accuracy. Indeed, we achieved both higher precision and recall
for males than did Weiss and Lockhart [6] (precision: 85% v.
72%, recall: 93% v. 82%). Our performance on females was
nearly identical. We obtained slightly higher precision (71%
v. 70%), but slightly lower recall (54% v. 57%). Despite the
fact that our data set has a disproportionate number of males,
our results are comparable to those obtained by Weiss and
Lockhart (who used a far more balanced data set). Though
our overall accuracy is not significantly higher than baseline

(83% v. 74%), our classifier achieved both high precision and
recall and, thus, is far superior to the baseline predictor.

6.1.2 Weight

Sp Lp R
Sa 37 9 80%
La 11 28 72%
P 77% 76%

Figure 6: Weight (excluding middle class)

Sp Mp Lp R
Sa 28 16 4 58%
Ma 6 38 13 67%
La 8 15 16 41%
P 67% 55% 48%

Figure 7: Weight

We were also fairly accurate when predicting weight. First, we
will compare our results to those of Weiss and Lockhart when
we exclude the middle class and only attempt to classify users
of extreme weight. Our overall accuracy was 76%, which was
comparable to their performance. We achieved higher recall
on the small class, but lower precision, while the opposite was
true on the large class. Thus, our results highly resemble those
of Weiss and Lockhart. Our data set, however, is significantly
larger and our data collection was not as controlled, so it is
encouraging to be able to reproduce their results.

For the three class problem, we achieved an overall accuracy
of 57% with satisfactory marginal performance for each class.
We again outperformed the baseline predictor (which achieves
40% accuracy on this data set). From the confusion matrix,
we see that there is little confusion among the small and large
classes, which further suggests that weight can be accurately
predicted from smartphone gait data.

6.1.3 Height

Sp Lp R
Sa 22 6 79%
La 9 16 64%
P 71% 73%

Figure 8: Height (excluding middle class)

Sp Mp Lp R
Sa 17 16 7 43%
Ma 22 51 6 65%
La 8 5 12 48%
P 36% 71% 48%

Figure 9: Height

Our results for height are less positive than those for weight
and gender. First, we will compare our results to those of
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Weiss and Lockhart when we exclude the middle class and
only attempt to classify users of extreme height. We achieved
an overall accuracy of 72%, while they achieved accuracy of
approximately 80%. They also achieved higher precision and
recall for both the small and large classes.

For the three class problem, we achieved an overall accu-
racy of 56% which is just marginally better than the baseline
predictor in this instance (55%). This is likely due to the
skewed nature of our height data, which is described in Sec-
tion 3.2. Improving our results on height prediction would
likely require a more varied data set and more predictive fea-
tures.

6.2 Identity

To access our accuracy when identifying individual users, we
again performed leave-one-out cross validation. Specifically,
we held out a single walking example from one individual
(while including all other examples from that individual as
well as the examples from everyone else in the training set)
and then tried to identify which individual is associated with
the held out example. We achieved an overall accuracy of 96%
when identifying user gait data collected from the mounted
position. Furthermore, 63 of the 75 individuals were correctly
identified 100% of the time, 10 of the 75 individuals were iden-
tified 80% of the time and the remaining 2 were correctly iden-
tified 60% of the time. When identifying user gait data from
either the fixed or mounted position, we correctly identified
the user associated with the gait data 76% of the time. Our
accuracy of 96% is on waist-mounted gait data is on par with
the work achieved by prior researchers [4,12], which is im-
pressive considering our data set contained significantly more
individuals. However, we also note there was a recent Kaggle
competition [5] that showed accelerometer data could be used
effectively as a biometric.

7 Summary

As smartphone accelorometer and gyroscope sensors grow
more and more ubiquitous, the potential uses for applications
that can predict a user’s identity and physical characteris-
tics from a smartphone lying passively in one’s pocket are
seemingly endless. One potential application is user-targeted
advertising, where knowledge of an individual’s gender or spe-
cific identity would greatly increase the precision of the tar-
geting. Considering the success we had in identifying individ-
uals, we can also envision a smartphone application that can
detect and report potential theft of the device by recogniz-
ing when the phone is being carried by an unauthorized user.
Further, we believe our research demonstrates that there are
many untapped applications for this data that can lead to a
significantly enhanced user experience.
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