
TF-IDF CHAT USER CLUSTERING

KEVIN MALINAK, JONATHAN SWENSON

MALINAK1@STANFORD.EDU, SWENSONJ@STANFORD.EDU

SUID: 05720218, 05713257

DEC 14, 2013

Introduction

Our project applies a k-means clustering algorithm to pair users on Chatous, a randomized chat site. The

user-pairing system currently in place utilizes a weighted randomized algorithm which takes into account

given profile information about the users, including age, sex, region, and interests. However, the algorithm

overlooks a wealth of information inherent in the actual raw text of the chats. By analyzing the past chat

history of a certain user, we can provide a cluster of users that share similar lexical characteristics, and we

expect that pairing users who user similar vocabulary will improve overall chat quality.

Input Data

The founders of Chatous have provided us with a dataset of around 9 million chats between users with

some metadata about each chat, such as which user disconnected, the number of chats that each user sent,

whether or not the chat was reported and who reported it, the time that the two users spent chatting as

well as whether or not the chat was reported. As Chatous is interested in protecting the privacy of their

users, they have redacted the actual text of the chat, but simply left us with the word frequencies for the

chat where each of the words has a global unique ID that they can use to look up words if we need them

to.

Model

We implement a TF-IDF (Text Frequency - Inverse Document Frequency) approach to weight a user’s

vocabulary according to a global vocabulary1. With this model, we can examine how frequent certain

words appear in a user’s vocabulary and can determine what may be important to that user. To do

this, we form a “feature vector” of the user’s vocabulary and then weight each of the features differently

with a TF-IDF model, which gives a high weight to words that are used frequently by the user, but not

used as frequently overall (over all the user’s vocabularies). This weighting allows us to emphasize more

individualized linguistic choices, as opposed to universally used words such as “and”, “the”, and “you”, etc.

1http://nlp.stanford.edu/IR-book/html/htmledition/tf-idf-weighting-1.html

1



TF-IDF CHAT USER CLUSTERING 2

To define in specific terms, in our input data we are given conversations between two users. Each

conversation contains user 1’s ID, user 2’s ID, and a set of words and the frequency of each word used

by each user in that conversation. First, for each user, we sum the word frequencies over all documents

associated with that user. This results in a vocabulary for each user which maps a word to the user’s

total frequency of that word. Then, we calculate the document frequency dft, which denotes the number

of documents in which the word t occurs. This helps us compute the inverse document frequency, which is

defined: idft = log

N
dft

, where N is the total number of documents. Finally, for each user, we iterate through

their used words and multiply their frequency, denoted tf , by their respective idf values. Thus, our final

model consists of a feature vector � (x) for each user, where x is the input data and � (x) is a vector where

the ith element is the tf � idf weight of that word.

Algorithm

Basic Structure

The basic structure of the algorithm that we are implementing is the k-means clustering algorithm as

given to us in class. We use the weighted feature vectors as calculated in the above model and cluster them

around k centroids. However, we deviate from the standard k-means in the objective function which we

wish to optimize. Instead of measuring and minimizing the Euclidean distance between a feature vector and

the centroids, we instead attempt to maximize the cosine similarity of the vectors; that is, we maximize

the function cos ✓ where ✓ is the calculated angle between the feature vector and the centroid vector2. Since

our feature vectors are in positive space (ie, words cannot be used negative times), this becomes a useful

metric, as the outcome is bounded in [0, 1]. The cosine similarity also has an advantage over the Euclidean

distance because if two particular users have similar vocabulary, but use the words in significantly different

frequencies, we want them to be placed in the same cluster; however, the Euclidean distance function would

potentially place them in different clusters.

Parameter Selection

We optimized our algorithm by varying the following parameters until we converged towards an optimum:

• The number of clusters: k = 10. With fewer clusters, we found that “super-clusters” formed, which

could be further separated with increasing performance, because we found several “sub-clusters”

which contained relatively little inter-cluster conversations. The super-clusters. With more clusters,

however, our algorithm resulted in “sub-clusters” which could be coalesced, again with increasing

performance.

• The size of the training and testing datasets: n = 100, 000. We need only consider a subset of

the 9 million chats to test the accuracy of our algorithm; furthermore, due to the inherently large

dimension of our feature vector (representing the entire vocabulary of a single user), the runtime

2http://pyevolve.sourceforge.net/wordpress/?p=2497



TF-IDF CHAT USER CLUSTERING 3

becomes unmanageably long. For the purpose of testing our algorithm, 100, 000 conversations

presents a sufficient clustering to achieve reasonable results.

• The number of k-means iterations: i = 15. We found that, given randomized initial centroids, our

algorithm tended to converge after a maximum of 15 iterations.

• Centroid initialization: µi =
1
m

Pm
j=1 �j (x). As an initial “guess” for the centroids, we randomly

select m = 500 feature vectors and set µi equal to their average. This results in decreased runtime,

as our initializations are presumably closer to their “true” values than if we had set their values

completely randomly.

Results and Analysis

Evaluation Metric

The metric by which we judge the success of our algorithm is the ratio of average conversation length

within a cluster (intra-cluster) to the average conversation length between clusters (inter-cluster). We chose

this metric because we set out to increase conversation quality, and it is safe to assume that two people who

are enjoying a high-quality conversation will tend to have longer conversations. Our clustering algorithm

is then successful if it discovers clusters of users whose intra-cluster conversation length is high, but inter-

cluster length is low; this signifies that users within a cluster tend to have higher quality conversations

with other users in that cluster, as opposed to users in other clusters.

Analysis

By the metric of conversation lengths, our algorithm was successful in increasing chat quality over the

clusters. We first trained our clusters on a randomly selected subset of 100, 000 conversations; then, using

the resulting centroid values, we clustered a mutually exclusive test set of 100, 000 conversations. In both

the training and test sets, for each cluster we calculated the average conversation lengths within itself

(intra-cluster) and from itself to each other cluster. The results, given in Table 1 and Table 2, demonstrate

a significant increase in intra-cluster conversation length versus inter-cluster conversation length over all

the clusters, and in both the training and test sets. Through clusters 1-9, the increase in conversation

length can be seen clearly over the given users; however, cluster 0 presented a more interesting case, which

we will address in the following section. Additionally, the test data produced two clusters (4 and 9) which

had no intra-cluster conversations; this is to be expected, as cluster 4 has 1 user (and thus cannot have

a conversation with itself) and cluster 9 has 2 users (and it is entirely possible for two randomly selected

users to not have had a conversation yet).

The Outlier Cluster (Cluster 0). Despite the clear improvement in conversation length in the other

clusters, we encountered a cluster which did not match the others and therefore presented a contradiction

to our theory. Cluster 0 contained a very large number of users who had relatively low conversation lengths;



TF-IDF CHAT USER CLUSTERING 4

Table 1. k-means Clustering Results on Train Data

Cluster Number of Users per Cluster Intra-Cluster Conversation Length Average Inter-Cluster Conversation Length

0 11118 0.645 1.283
1 944 19.832 1.882
2 1434 50.542 2.228
3 847 16.556 1.771
4 91 163.917 1.968
5 4462 4.317 1.938
6 1974 23.718 2.143
7 416 225.213 2.190
8 114 108.500 1.847
9 99 64.479 1.855

Average 2150 67.772 1.911

Table 2. k-means Clustering Results on Test Data

Cluster Number of Users per Cluster Intra-Cluster Conversation Length Average Inter-Cluster Conversation Length

0 16349 0.658 1.309
1 260 16.821 2.002
2 331 38.630 1.926
3 218 15.573 1.603
4 1 N/A 1.855
5 3655 4.330 1.918
6 558 20.0 2.166
7 203 185.927 2.241
8 3 202.911 1.799
9 2 N/A 1.764

Average 60.606 1.858

more importantly, this cluster exhibited a lower intra-cluster conversation length than inter-cluster length.

In layman’s terms, we found a cluster of users who did not like to talk to other users in the same cluster,

but liked to talk to users outside of that cluster. Our first hypothesis for this phenomenon was that this

cluster was comprised of male or female users who did not want to talk to the same sex, or that it was

comprised of users from a specific region; however, an analysis of the metadata showed that neither of these

cases were true. We compared Cluster 0 to Cluster 7, which we decided to be roughly indicative of the

other clusters, and found that the distributions of gender and region were roughly similar (see Tables 3

and 4). Thus, a deeper analysis of the cause of Cluster 0’s characteristics is needed. Unfortunately, due to

the fact that the original words used by our users has been redacted, it is difficult to produce meaningful

results; however, our prevailing hypothesis is that Cluster 0 contains users who are “shy” and do not tend

to initiate conversations. When two shy users are placed in a chat, they wait for the other user to reply;

when they do not, they cancel the conversation and move on. However, when this user is paired with a user

from a different cluster, they will tend to carry on a longer conversation.

Conclusion

We present a finalized process for pairing users using the k-means clustering system:



TF-IDF CHAT USER CLUSTERING 5

Table 3. Comparison of Cluster 0 and Cluster 7 by Gender

Training Data Test Data

Cluster % Male % Female % Not Specified % Male % Female % Not Specified

0 53.581 42.510 3.909 53.681 42.456 3.863

7 52.217 43.842 3.941 56.853 38.579 4.668

Table 4. Comparison of Cluster 0 and Cluster 7 by Region

Training Data Test Data

Cluster % US % India % UK % Canada % Other % US % India % UK % Canada % Other

0 40.403 12.117 7.149 4.227 36.104 40.155 12.258 7.150 5.198 35.239

7 43.147 14.213 4.061 6.091 32.488 46.798 9.852 5.911 3.941 33.498

(1) Train the clusters using the k-means algorithm with cosine similarity on a subset of the dataset.

(2) Given a new user, calculate the closest centroid using cosine similarity.

(a) If the user conforms to the outlier cluster, pair with a user from a different cluster.

(b) Else, pair with another user from the same cluster.

Using this process, we have empirically shown an increase in conversation lengths over the given dataset.

Users will tend to have longer conversations, which is correlated with higher chat quality and a better

overall experience with the Chatous application.

Future Analysis

As noted, the redaction of used words in the dataset prevented us from a deeper analysis of our results.

With this extra information, we may be able to classify and generalize each cluster based on the used

words; for instance, the most frequently used words for each cluster could possibly correlate with topics of

the conversations within that cluster, or we could determine the root cause of the outlier cluster’s appearance

in the data. Furthermore, access to true user vocabulary could help to determine bots spamming the site

– a user spamming a URL or a particular product name is much more likely to be a bot.


