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Abstract—Galvanic skin response (GSR) is commonly used to measure
short-term emotional and cognitive stress, but measuring GSR requires
obtrusive equipment. We present a model to predict stress levels
solely from electrocardiogram (ECG) data, which can be measured
with wearable consumer-grade heart monitors. Our model incorporates
time and frequency domain features of heart rate variability, and the
spectral power components of the ECG. We make predictions on a
sliding window of ECG signal. We apply a linear model to predict
stress as a continuous quantity, and our prediction is correlated with
the actual GSR with R? = 0.873 + 0.035. We also present a model
for classifying each window as a binary “stress” or “rest” periods. The
best performance was achieved with a linear SVM, with an F} score
of 0.98 on the most distinct samples (highest and lowest 20 percentile
GSR levels), and F; = 0.85 over all samples.

1 Background

Society and science alike agree on the deleterious effects
of stress, which we will here define as the short-term
activation of the sympathetic nervous system caused
by cognitive stressors (as opposed to physical activity).
Chronic emotional and mental stress has been linked to
a range of health problems [1], [2]. People often don’t
notice triggers that cause them to become stressed. Stress
is easy to identify using galvanic skin response (GSR),
which measures sweating of the hands. However, these
sensors interfere with daily activity. Meanwhile, unobtru-
sive, wearable, off-the-shelf heart rate sensors and elec-
trocardiogram (ECG) devices are becoming increasingly
affordable. We seek to use this sensor data to determine
when the wearer is experiencing stress.

A simplistic heart rate analysis usually takes a long
time to detect a stressor, and it is difficult to determine
if an increase in heart rate was caused simply by physical
activity (such as standing up) or cognitive/emotional
stress. On the other hand, GSR is particularly useful in
the immediate identification of short-term stress events,
because about 1-2 seconds after a startle event, an
individual’s palms will sweat and GSR will spike [3]. The
goal of our project is to achieve the accuracy of GSR-
based stress detection with only ECG signals.

2 Data Set and Features

Subject 03

Figure 2.1: An example of GSR data (top) and ECG data
(bottom). Shaded regions correspond to GSR values greater
than 60% of all other GSR values in the record, an indicator
that the subject was possibly experiencing stress.

We use data from a study by Healey and Picard [4],
available from PhysioNet [5]. In this data set, GSR (on
the skin of the hand) and ECG signals were continuously
collected while drivers experienced stress-inducing events
(busy streets, red lights, highways) as well as a rest
state (parked in a garage). The signals were recorded
at a rate of 31 Hz for the GSR and 496 Hz for the
ECG. Healey’s original study also included a variety of
other features, such as respiration, electromyogram in the
shoulder (muscle tension), and foot GSR. Hand GSR is
the most commonly used indicator of stress, so we use
that as the ground truth for subject stress.

This data is relatively noisy. In about 10% of the
records, the data collection had clearly gone awry (de-
tached leads, wildly noisy/jittery signals), so we manu-
ally examine the signal graphs and exclude those portions
of the records. Each record is windowed using a fixed-
size sliding window of length W seconds (using cross-
validation, we later determined that W = 24 was the
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best option). From the ECG signal in the window, we
extract heart rate variability features as well as spectral
features of the raw waveform itself.

2.1 Heart rate variability features

Heart rate variability (HRV) features can be extracted
from the timing of heartbeats alone. These features
therefore only capture a limited subset of the information
in the ECG signal, but they can be collected with only
a simple heart-rate sensor, which is less expensive than
a full ECG device.

We first use an automatic QRS wave annotation tool
(WQRS) on the ECG data to identify morphological
features in the ECG, such as the R peak of each heart-
beat. The RR intervals (lengths of intervals between
heartbeats) are then used to extract heart rate variability
(HRV) features.

We use tools available through the PhysioNet WFDB
package and HRV features that are commonly used for
ECG analysis [6]. The time-domain features of HRV
consist of the following characteristics of RR intervals:

o NN/RR: The fraction of heartbeats that are consid-
ered “normal” heartbeat lengths

o AVNN, SDNN, SDANN: Average and standard de-
viation of RR intervals

o SDNNIDX: Mean of the standard deviations of RR
intervals in all 5-minute segments

« RMSSD: RMS difference between adjacent RR in-
tervals

o PNN: Percentage of adjacent RR intervals that differ
by more than 50 ms

To compute frequency-domain features of HRV we apply
a Lomb periodogram, a variant of the Fourier transform
designed for time series sampled at uneven intervals (such
as heartbeats). The following features are extracted from
the periodogram:

e TOTPWR: Total spectral power of all RR intervals
up to 0.04 Hz

o ULF, VLF, LF, HF: Total spectral power of all RR
intervals in the bands 0-0.003 Hz, 0.003-0.04 Hz,
0.04-0.15 Hz, 0.15-0.4 Hz

o LF/HF: Ratio of power in the LF to HF bands

2.2 ECG-based features

The raw ECG data contains the full spectrum of the
heart’s electrical activity, giving data that is richer than
the timing of the heartbeats. We compute the Fourier
Transform and take the logarithm of summed total power
in 10Hz bands, from 0 to 200 Hz. This follows previous
work by Chou et al. who showed that these ECG fre-
quency bands were discriminative for detecting abnormal
heart events [7].

3 Model

3.1 Continuous Stress Prediction

Our first approach was to apply linear regression directly
to the features and attempt to predict a continuous stress
value from the ECG features. We tried ECG spectra
alone, as well as a combination of ECG and HRV fea-
tures as predictors in the linear model. We experimented
with different fitting procedures, including ordinary least
squares, ridge regression, and LASSO regularization.

3.2 Stress Detection with Binary Classification

We next formulated the problem as a binary classifica-
tion problem. Windows are labeled as “stress” or “rest”
windows. To produce ground-truth labels, we use the
relative value of the GSR signal: when GSR is in the top
or bottom cutoff percentile in the record, the window
is considered “stress”. A cutoff of 0.5 corresponds to
labeling all windows with above-median GSR as “stress”
and all below-median GSR windows as “rest”. When
cutoff is less than 0.5, we train on and classify only the
subset of data where the GSR is most extreme portion
of the record: this corresponds to estimating stress only
for the most clearly stressed or relaxed time periods.

We applied many techniques to this classification prob-
lem. The first was a Gaussian Naive Bayes classifier,
which fits a Gaussian distribution to each feature inde-
pendently of the others. That is, for the classes y = +1
(stress) and y = —1 (rest), we modeled the class distri-
bution of each feature x; independently as
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We then applied an SVM to the binary classification
problem and tried many kernels (rbf, polynomial with
degrees 2-4, sigmoid, and linear). To determine the best
regularization parameter and kernel and evaluate perfor-
mance, 15-fold cross-validation was used.

We also tried k-nearest neighbor classification, in
which each window is assigned based on a vote of its
k nearest neighbors in the feature space, and a random
forest classifier.

P(zi|y) =

3.3 Varying Prediction Windows

We hypothesized that heart-based predictions might lag
the GSR because GSR exhibits a faster biological re-
sponse. Thus, we tried using a shorter subportion of
the window to assign the ground truth label of the
window. Figure 3.1 shows the results of varying this label
window length. Decreasing the window length generally
decreased our Fj score, so we settled on using the same
window for input features and labels.
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Classification Score vs Label Window Width
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Figure 3.1: Performance under changing label window
widths

We also tried a few more variations on the features and
windows:

o We used previous and future ECG windows to pre-
dict the GSR in a short two-second window.

o To capture changes over the duration of the window,
we extracted the HRV/ECG features separately
from each third of the window, resulting in three
times as many features.

Neither of these changes improved classification accuracy.

4 Evaluation and Results
4.1 Continuous Model Results

Predicted vs Actual GSR
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Figure 4.1: Scatter plot of ECG-predicted stress levels versus
actual GSR, and the least-squares regression line. R? = 0.87.
The regression line is y = 0.9401x + 238.7.

The linear regression yielded stress predictions that
were reasonably correlated with the observed GSR. The

model was evaluated with 15-fold cross-validation, and
examining the correlation between the stress prediction
(z-axis) and the actual GSR. A perfect prediction would
have R? = 1 and all points on this plot lying on the
line y = x. When predicting stress levels with only the
ECG spectral features, we achieved R? = 0.8474 + 0.05.
With both ECG and HRV features, we achieved R? =
0.873 £ 0.035 and a line that is fairly close to unity
(Figure 4.1).

4.2 Binary Classification Results

We measured the performance of our binary classifier
using the F} score, which is defined as the harmonic mean
of the precision and recall. That is,

precision - recall

Fi=2 precision + recall’
Classifier Features F1 Accuracy
SVM-rbf hrv 0.6071
SVM-linear hrv 0.7268
GaussianNB hrv 0.7855
GaussianNB ecg 0.8447
GaussianNB ecg,hrv 0.8815
SVM-linear ecg 0.9787
SVM-linear ecg,hrv 0.9836

Figure 4.2: Selected combinations of classifier and feature
set Classification with cutoff = 0.2. “ecg” corresponds to the
20 bands of ECG frequency content, and “hrv” corresponds
to the 13 time and frequency domain HRV features.

We tried a range of different classifiers and feature sets.
Figure 4.2 shows some selected combinations. We found
that a linear SVM (i.e. logistic regression) on both ECG
frequency features and HRV features performed best,
outperforming other model choices slightly.

We also tried a k-means classifier and a random forest
classifier, neither of which achieved competitive accuracy.

In Figure 4.3, we examine classification accuracy for
varying cutoff GSR levels. In this graph, we see that clas-
sification accuracy is highest for the top and bottom 20
percent of GSR values, and classification accuracy drops
off as we approach increasingly ambiguous GSR samples.
This is reasonable, because the windows that have mid-
dling GSR values may not be as distinctively distinguish-
able as “stress” or “rest”. When cutoff is extremely small,
classification accuracy also suffers, though, because there
are not enough training examples. When classifying all
windows, the Fj score is 0.84.

We varied the width of windows (Figure 4.4) and found
that a length of 24 seconds is optimal. Extremely long
windows performed increasingly poorly, likely because
they often contained a mix of both stress and rest states.
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ecg_freq_0_10 0.75277
ecg_freq_150_160 0.80611
ecg_freq_140_150 0.8475
ecg_freq_10_20 0.86944
ecg_freq_180_190 0.8875
hrv_pnn 0.89194

Additional features: hrv_hf, hrv_If, hrv_nn,
hrv_sdann, hrv_totpwr, hrv_ulf, hrv_vlf,
ecg_freq_160_170, ecg_freq_80_90,
ecg_freq_50_60, ecg_freq_130_140, hrv_rmssd,
hrv_avnn, ecg_freq_90_100, hrv_sdnn,
ecg_freq_40_50, ecg_freq_120_130,
ecg_freq_60_70, hrv_sdnnindx, ecg_freq_170_180,
ecg_freq_20_30, ecg_freq_110_120,
ecg_freq_190_200, ecg_freq_70_80, hrv_Ifhf,
ecg_freq_100_110, ecg_freq_30_40

Figure 4.5: Performance achieved by incrementally adding features selected by forward search.
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Figure 4.3: Performance with our best classifier (linear
SVM, 24-second windows) at different cutoffs for the training

window lengths.
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Figure 4.4: Classification accuracy (Fi score) with varying

window sizes.
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Forward search (Figure 4.5) indicated that the major-
ity of the classification performance was due to just a
few top features: the ECG features in various bands, and
the PNN50 feature (percentage of adjacent normal RR
intervals that differed by more than 50ms). This indicates
that immediate variation in heart rate is a good indicator
of stress.

5 Conclusion

Using a combination of HRV and ECG features, we are
able to predict whether the GSR is in the highest or
lowest 20 percentile with 98% accuracy. Samples with less
extreme GSRs can be predicted with 85% accuracy. This
suggests that using consumer ECG devices, we would be
able to predict whether or not the user is stressed with
high confidence without requiring GSR measurement.
We draw the following conclusions.

« HRV is not enough to reliably determine
stress state. Low-end consumer devices only trans-
mit heartbeat timing and not the full ECG signal.
The added information from ECG spectral features
increased classification score from F; = 0.78 (with
only HRV) to F; = 0.98 (with HRV and ECG
spectral features combined).

¢ ECG responds quickly to stress stimuli. We
were expecting that the GSR response might occur
significantly before or after the ECG response, but
offsetting the windows only decreased classification
score.

¢ ECG captures subtle heart activity variations.
There is valuable additional data in the raw ECG
waveform, perhaps due to intrabeat variations in
wave morphology or due to increased movement-
induced noise when subjects were stressed. If the
wave morphology itself changes, follow-up studies
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should consider incorporating time-domain features
of the QRS complex. Each ECG cycle typically has
five deflections (P, Q, R, S, T), and meaningful
physiological information might be derived from
variations in the relative lengths and amplitudes of
these sub-waves.

e Stress is continuous, but a binary classifica-
tion can often be sufficient. Stress is an in-
herently continuous (and likely multi-dimensional)
variable, so this binary classification as “stress” or
“rest” is a simplification that would be appropriate
in applications that would have to take a specific
action in response to a certain stress threshold level.
This level could be varied by changing the weighting
of classes in the SVM.

5.1 Future Work

Other approaches that might be considered include di-
mensionality reduction using PCA.

A deeper qualitative understanding of which features
are most important could help us discover more features
and better understand the biological processes related to
activation of the sympathetic nervous system.

We might consider extracting different HRV features:
Barbieri et al. propose modeling the heartbeat intervals
as an inverse Gaussian process, and describing the HRV
using the parameters of this process [8].

We might also try including finer-grained bins of the
ECG spectrum. We recently learned that most of the
information content in ECGs is contained in the 0-40
Hz band, so more resolution in that area might improve
results. Other researchers have suggested that other
time-frequency analysis algorithms (such as the Wavelet
transform) may improve discrimination of ECG data [9].

Another dimension to explore would be to distinguish
between positive and negative emotional stress (eustress
and distress, respectively)—we currently make no dis-
tinction. Our data set probably consisted of mild distress,
a neutral state (rest), and few incidences of eustress,
because it was all collected during automobile driving.
Some researchers have shown that in certain cases heart
rate increases more for positive arousal than for negative
arousal [10].

5.2 Applications

Measuring stress with ECG has diverse applications.
Psychology experiments measuring stress levels would no
longer require a subject’s hands to be free, would require
less intrusive equipment, and could reduce cost. One
consumer application is a “stress alert” system that could
be worn at all times of day. Most current biofeedback
systems rely on hand GSR, which is cumbersome and
cannot be worn continuously.

For a consumer application, we would consider using
an online and incrementally adaptive learning system.
Initially, with only generic training data, we may achieve
classification accuracy of approximately 85% (the accu-
racy we achieve when pooling different subjects’ records).
User feedback could be used to generate further training
examples for an incremental online learning algorithm.
We plan to test our models for stress prediction and
binary stress classification with real-time data from a
Bluetooth ECG device.

References

[1] Lawrence R Murphy. Stress management in work settings:
a critical review of the health effects. American Journal of
Health Promotion, 11(2):112-135, 1996.

[2] Franklin Stein. Occupational stress, relaxation therapies,
exercise and biofeedback. Work: A Journal of Prevention,
Assessment and Rehabilitation, 17(3):235-245, 2001.

3] S. R. Vrana. Emotional modulation of skin conductance
and eyeblink responses to startle probe. Psychophysiology,
32(4):351-357, Jul 1995.

[4] Jennifer A Healey and Rosalind W Picard. Detecting stress
during real-world driving tasks using physiological sensors.
Intelligent Transportation Systems, IEEE Transactions on,
6(2):156-166, 2005.

[5] Ary L Goldberger, Luis AN Amaral, Leon Glass, Jeffrey M
Hausdorff, Plamen Ch Ivanov, Roger G Mark, Joseph E Mi-
etus, George B Moody, Chung-Kang Peng, and H Eugene
Stanley. Physiobank, physiotoolkit, and physionet compo-
nents of a new research resource for complex physiologic
signals. Circulation, 101(23):e215-220, 2000.

[6] Sansanee Boonnithi and Sukanya Phongsuphap. Comparison
of heart rate variability measures for mental stress detection.
In Computing in Cardiology, 2011, pages 85—-88. IEEE, 2011.

[7] Tracy Chou, Yuriko Tamura, and Ian Wong. Detection of
atrial fibrillation in ecgs. CS 229 Final Class Projects, 2008.

[8] R Barbieri, EC Matten, and EN Brown. Instantaneous mon-
itoring of heart rate variability. In Engineering in Medicine
and Biology Society, 2003. Proceedings of the 25th Annual
International Conference of the IEEE, volume 1, pages 204—
207. IEEE, 2003.

[9] AKM Fazlul Haque, Md Hanif Ali, M Adnan Kiber, and
Md Tanvir Hasan. Detection of small variations of ecg features
using wavelet. ARPN Journal of Engineering and applied
Sciences, 4(6), 2009.

[10] Peter J Lang, Mark K Greenwald, Margaret M Bradley, and
Alfons O Hamm. Looking at pictures: Affective, facial, vis-
ceral, and behavioral reactions. Psychophysiology, 30(3):261—
273, 1993.

[11] W Picard and Jennifer A Healey. Wearable and automotive
systems for affect recognition from physiology. 2000.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss,
V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning
Research, 12:2825-2830, 2011.



