Learning Game Playing Strategy for Durak

Sammy Nguyen (smnguyen): CS221, CS229; Narek Tovmasyan (ntarmeni): CS229

Introduction

Durak is a card game played with a 36-card deck (6 through Ace from a regular 52-card deck), where
rounds are taken with one player “attacking” and the other “defending”. The objective of the game is to get rid
of all the cards on one’s hand. To reduce complexity, we consider the case of two-player Durak. The first
player to have no cards left is declared the winner. The game starts by shuffling the full deck of cards and
dealing out 6 cards each to the 2 players. Then the top card on the remaining deck, unlike the rest, is revealed
and put face up under this common deck. The suit of this visible card thus becomes the trump suit. However,
this differentiated card is still a part of the deck, from which the players will draw cards during the actual
gameplay (including this revealed card, in the end).

The player who has the lowest trump card goes first, by initiating the first attack of the game. The
defender attempts to beat any subsequent attacking card by playing a higher card of the same suit as the top
card on the table or playing a trump card of any rank.! The attacker may maintain the attack by playing only
cards of the same rank as those already on the table. If the defender is unable to play a superior card or
chooses to not play a card, they must pick up all the cards on the table -- including all the cards the current
attacker pitched in -- and add them to their hand. In either case, the defender thus fails to discontinue the
defense. Accordingly, the attack is considered to have been successful and thus the “right” to attack is not
passed from the current attacker to defender. So the attacker begins a brand-new attack at the next round.
Otherwise, if the attacker cannot continue attacking (or is unwilling to), this immediately ends the current
round and all played cards on the table are discarded. The defender is said to have “triumphed” defending at
the previous round and opens the next turn as the new round’s attacker.

At the end of each round, if any player has less than six cards in their hand, cards are drawn from
the deck until the player has six cards again or until all cards in the deck are gone. The attacker of the
completed round always draws the required number of cards first; the last round’s defender draws any needed
cards second. The order in which this is carried out is strategically important, because the last card in the
deck is a trump. By the rules of the game, a player is not allowed to see their opponent’s hand, and no players
may examine the discard pile or current deck at any point.

When the deck is emptied, players keep going without drawing cards. This phase constitutes the
endgame where cards are either in the player’s hand, the opponent’s hand, the discard pile, or on the table.
Through card-counting, a player can determine with 100% certainty the cards in his opponent’s hand. At this

point, the first player to get rid of their cards becomes the winner of the game.

' A trump card beats any non-trump card regardless of its denomination/rank (e.g., a trump 6 or 7 beats any
of the three non-trump aces).

In this project, we use reinforcement learning techniques to develop an Al that will play competitively
against a player that plays with the simple yet quite powerful policy of playing its lowest ranked non-trump
card, or its lowest ranked trump card if no non-trump cards are available. The vast state space of Durak will
make it impossible to run value iteration, so we featurize each state and run temporal difference (TD) learning
to learn weights that will help approximate the value for each state. During the endgame, we also use
minimax to help determine the action to take at each turn, assuming that the player’s opponent will always
take their optimal action. Similar to the agents in Tesauro’s TD-Gammon, we train our agents by having

them play games against themselves.

Methods

Data and Simulation:

Using Python, we created a console program to run a game of Durak, and several baseline agent
classes: a HumanAgent which prompts the user to input decisions into the console, a RandomAgent which
chooses actions at random, and a SimpleAgent that executes the policy of choosing the lowest valued card
possible to play. To provide a baseline for the MinimaxAgent, we also created a
SimpleHandicappedAgent, which executes the same strategy as the SimpleAgent until the endgame,
where it chooses actions at random. The simulator logs data about the game state for each player, i.e. what
each player knows about the state of the game at his turn. Specifically, the simulator records at each player’s
turn, the cards in the player’s hand, the current number of cards remaining in the deck, the cards that have
been discarded, the cards on the table, the number of cards the opponent has, the cards it knows its opponent
has, and cards that the player has not yet seen.

To extract features for learning, we examine a game state recorded by the simulator, and calculate for
the player’s hand: the average rank of each suit, the number of cards per rank, the number of cards per suit,
the number of trump cards, and how many more cards the player has compared to the opponent. Additionally,
from the cards that we know the opponent has, we determine a minimum bound on how many cards the
opponent can respond with. These features were used for the reflex agent, and one version of the minimax
agent. One problem with this set of features is that it does not compute the relative strength of a player’s hand
compared to his opponent’s hand. We cannot reliably compare the strength of the player’s hand until the
endgame without using probabilistic guesses through the hypergeometric distribution (selection without
replacement), which can be very noisy -- an extreme example of this would be the first round of the game,
where the players know nothing about which cards their opponents have. In general, the game environment
is not fully observable, so decision making becomes more difficult, since an action will only be good with
some probability.

At the endgame, however, a player can know with 100% certainty which cards the opponent has.

Thus, for the minimax agent, we can compare the strengths of the players’ hands and calculate the following

features: the difference in average ranks per suit, the difference in number of cards per rank, the difference in
cards per suit, the difference in number of trump cards, how many more cards the player has compared to the
opponent, and indicator functions on whether a player has the maximum card for each suit. Finally, instead
of a minimum bound, we can compute the exact number of cards that are valid for the opponent to use on his

turn.

AI Development:

To create game-playing agents for Durak, we used reinforcement learning and the temporal
difference (TD) learning framework to learn the values for each state. TD learning uses sets of weights,
which are learned, that help approximate the value function.The general TD learning weight update is as
follows: given a state s, an action a, a reward r, and a successor state s’,

wtD) =@ — [V (s;wD) — (r + YV (s; w(’)))]VW(,)V(s; w®)
Because the state space for Durak is so large, it is impossible to use value iteration to compute the value for
each state. Therefore, TD learning allows us to use an approximation of the value function, parameterized by
the weights. For Durak, we chose to use a logistic function to approximate the value of each state -- this can
be interpreted as the probability of winning the game given a specific state.

Because of the rules of Durak, a certain hand that might be strong for attacking might be weak for
defending. An extreme example of this would be a hand with many low ranking cards, e.g. all four 6s, an 8,
and a 9. This hand would be good for attacking, since there are many duplicates, but weak for defending,
since the cards are all low in rank. To solve this problem, we use two sets of weights which are used for
determining the best attacking action and the best defending action. For a state diagram as follows (‘a’
denotes attack, ‘d’ denotes defense), we have the following TD updates:

---Sa(t) . aa(t) — rd(tfl) . Sd(t) _ ad(t) —_— ra(t) . Sa(H—l)...

wa ™ =w O =V (saP3wa?) = (" + YV (saHV5wa NIV, o V(saP3wa?)
Wd(t+1) = Wd(t) - n[v(sd(t);wd(t)) - (rd(t) + YV(Sd(Hl);Wd(t)))]vwd(t)v(sd(t);Wd([))

Using the TD learning framework, we trained three different agents: a reflex agent and a minimax
agent using features based solely on the player’s hand, and another minimax agent based on features
involving the strength of the player’s hand in relation to the opponent’s hand. The reflex agent determines an
action to take relatively quickly, since it only examines the immediate state of the game. The minimax agents
work by following the strategy of the SimpleAgent until the endgame, at which point it determines the best
move to take to maximize its chance of winning, given that the opponent will try to maximize its own chance
of winning. This decision occurs by actually playing through the game for each possible action and choosing
an action that results in win. In practice, doing a complete search takes too long, even at the endgame, so
exploration only occurs to some specified depth -- we chose 4 plies (turns of play) -- at which point the value

of the resulting state is approximated.

Results

As a baseline comparison, RandomAgent can only beat SimpleAgent approximately 1% of the

time. SimpleHandicappedAgent does better, but only beats SimpleAgent approximately 15% of the

time. As might be expected, each agent wins 50% of the time when playing itself. To evaluate each agent, we

train each agent for at least 500 games, and evaluate the performance of the learned weights every 50 games

by having the agent play 100 games against the random and simple agents.

Reflex Agent

0.75

Percentage Won
(=]
o

Reflex Agent Win Rate (Trained against Self)

B PercentWon
vs. Random

B PercentWon
W’-__— vs. Simple

100 200 300 400

Training leration

Minimax Agent v1

Figure 1. ReflexAgent was
trained against itself over 600
games, After every 50 games,
the learned weights would be
evaluated by having ReflexAgent
play Randomagent and
SimpleAgent for 100 games. The
learned weights for ReflexAgent
result in wins around 80% of the
time against RandomaAgent, and
wins 10% of the time against
SimpleAgent. No significant
improvement in success was
detected after training.

Features for this minimax agent were based mainly on cards in the player’s hand.

08

Percentage Won
(=]
L1

0.4

Minimax Agent Win Rate (Trained against Self)

R eV VARV Y

0 400 200 1200

Training Iteration

W

M FercentWan
vs. Random

B PercentWon
vs. Simple

Figure =, MinimaxAgent vi
was trained against itself over
ao00 games, After every 50
games, the learned weights
would be evaluated by having
ReflexAgent play RandomAgent
and SimpleAgent for 100 games.
The best learned weights for
ReflexAgent result in wins
around 96% of the time against
RandomAgent, and wins 38% of
the time against SimpleAgent,
Mo significant improvement in
success was detected after
training.

Minimax Agent v2

Features for this agent were based on comparing the player’s hand to the opponent’s hand.

Minimax Agent Win Rate (Trained against Self) Figure 3. MinimaxAgent vz
was trained against itself over
vs Random Qo0 games, After every 50
B PercentWon games, the learned weights
0.75 vs. Simple would be evaluated by having
ReflexAgent play Randomagent
and SimpleAgent for 100 games.
The best learned weights for
ReflexAgent result in wins
arcund 85% of the time against
RandomAgent, and wins 21% of

W the time against SimpleAgent.

0 200 400 600 200

1 M FercentWaon

Percentage Won
(=
w

Training fteration

Conclusions

Although all trained agents do significantly better than their random counterparts (Random vs.
Reflex, SimpleHandicapped vs. Minimax), they still do not reach or exceed the performance of
SimpleAgent. Additionally, the performance of each trained agent does not seem to visibly improve over
time. This is most likely because the set of features we selected was either not large enough, or because the
features don’t accurately represent the information needed to make a good decision on which action to take.
For instance, comparing Minimax vi with Minimax v2, it appears that features based mainly on cards in the
player’s hand do better than features comparing strengths of the player’s hand and the opponent’s hand.
However, Minimax v2 does seem to be improving, albeit slowly, so training for more iterations may be a
useful improvement as well. The main impediment to increasing the number of training iterations was speed,
so future work would either necessitate increasing speed, or using a reinforcement learning library already
optimized for speed.

We have been excited and challenged by this project, and would like to capitalize on the great
opportunity this project has afforded us and extend the work done in this paper in the future.

References
Tesauro, G. (1995). Temporal difference learning and TD-Gammon.Communications of the ACM, 38(3),
58-68.

Ng, A. (2013). CS229 Lecture notes: Reinforcement Learning and Control. Stanford University.

