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Being able to accurately predict the solar power hitting
the photovoltaic panels is a key challenge to integrate more
and more renewable energy sources into the grid, as the total
power generation needs to match the instantaneous consump-
tion load. The solar power coming to our planet is predictable,
but the energy produced fluctuates with varying atmospheric
conditions. Usually, numerical weather prediction models are
used to make irradiation forecasts. This project focuses on
machine learning techniques to produce more accurate predic-
tions for solar power (see figure 1).

Our strategy to make this prediction is:
- collect, understand and process the weather data,
- perform different machine learning techniques to make the
prediction,
- perform some feature engineering aside of the forecast fea-
tures,
- analyze the results and discuss them.

Figure 1: Distribution of the annual insolation at the Mesonet sites
(training data).

1 Gathering the data
The data (in netCDF4 format, very popular to manipulate
weather data) has been downloaded from the Kaggle website,
provided by American Meteorological Society[1] in several
files:

1. weather data, as the values of 15 weather parame-
ters (such as precipitation, maximum temperature, air
pressure, downward/upward short-wave radiative flux,...)
forecasted at 5 different hours of the day and provided
by 11 different ensemble forecast models. This data is
forecasted for a uniform spatial grid (16× 9) centered on

Oklahoma State and has been collected everyday from
1994 to 2007 (5113 days) for the training dataset and
from 2008 to 2012 (1400 days) for the testing dataset.

2. daily incoming solar energy data, as the total daily in-
coming solar energy at 98 Oklahoma Mesonet1 sites (dif-
ferent from the grid points of the weather data from 1994
to 2007.

With the weather data from 2007 to 2012, for the 144
GEFS2 grid points, we want to predict the daily solar energy
at the 98 Mesonet sites, as shown on figure 2.

Figure 2: The weather data is known at the GEFS sites (blue), while
the solar prediction needs to be done at the Mesonet sites (black).

2 Adapt the data to our needs
For each Mesonet site, we have identified the four closest
GEFS weather sites, as shown on figure 3. There are then two
possible methods to use the data. For each Mesonet site, we
can either interpolate geographically the weather data from the
grid to the Mesonet site, or factor all the features in our algo-
rithms to make a prediction.

2.1 First attempt: Interpolate weather data
from the grid to the Mesonet sites

For this, we have different options of spatial interpolation to
estimate the value of each weather data from the four GEFS
stations to the Mesonet site (see figure 3). We chose the in-
verse distance weighted average, with the distance being cal-

1http://www.mesonet.org/
2Global Ensemble Forecast System



culated between two points on a sphere from their longitude
and latitude (harvesine distance). For each weather data type:
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with wk = 1/dk = distance[Mesonet−GEFSk]
After this step, we could have weather predictions at our 98

Mesonet sites and could perform supervised learning methods,
knowing the daily incoming solar energy at those sites. The
main challenge was the very large CPU time needed to run the
interpolation task. But it was performed only once for all.

Figure 3: An interpolation of the weather data from the GEFS sites
to the Mesonet site is needed.

We were afraid that this pre-algorithm interpolation would
turn out to be inconclusive as the aggregation of data would
reduce the information we eventually had for the predictions.
For example, correlations between the features within each
weather station would be lost.

So, we decided to try another method by keeping the inter-
polation for later in the analysis: for each Mesonet site, we
would treat all the data available from the four closest weather
stations.

2.2 Second attempt: Factor weather data from
the four nearest GEFS grid points as fea-
tures for each Mesonet site

For each Mesonet site, we then had the four sets of data from
the GEFS stations. Two ways were then possible. We could
use the four sets of data to make one solar prediction for each
of them (four in total) and then interpolate them to the Mesonet
site. Or we could make a single prediction for the Mesonet site
from the four stations.

Here again, there may not be a direct relationship between
the incoming solar radiation at the weather stations and the one
at the Mesonet site. That is why we opted for the most con-
servative method: the interpolation would be indirectly done
by adding predictors such as the distance between each station
and the central site.

2.3 Verdict
After training our models with these two methods, we ob-
served that pre-algorithm interpolation gave much inaccurate
predictions with training and testing errors both unacceptably
high compared to the unaggregated model, while being much
faster to process (the data handled was then 4 times smaller,
which is significant when the lower bound for the total data
loaded is around 2GB).

Therefore we decided to go on with an unaggregated model.
At this stage, we have weather data for: 98 sites ×4 stations
×5113 days ×5 hours ×15 parameters ×11 models, plus the
distances between the Mesonet and each of the four closest
GEFS sites.

3 Selecting the predictors
Because of the multiple dimensions of the weather data avail-
able, we have decided to make some grouping for the data. As
the output should be the daily expected solar power, for each
day, site and weather model, we have composed an array of the
15 weather parameters, taken for the 5 different timestamps of
the day and the 4 closest stations, which gave an array of 300
predictors for each given day, site and weather model.

After that, we we able to run algorithms on the data for each
day, site and model. In the weather prediction industry, these
models are usually equally weighted when running forecast
softwares. So, we have decided to average the power forecasts
from the different models to estimate their combined predic-
tion. However, all the weather parameters are forecasted using
the same model, so, not to loose the correlation that we have
within the same model (11 models, 300 predictors), we could
not work simultaneously with all the models together (300×11
predictors). Therefore the steps chosen to run the algorithms:

1. take the average of each parameter on the 11 models

2. train one model over all the days and sites

3. for each site/day: estimate the incoming solar energy

At this stage, we had weather data for: 98 sites ×5113 days
×(75 + 1) parameters (distance Mesonet-GEFS) ×4 stations.

This boils down to: 76×4 = 304 features, and 98×5113 =
501074 samples, for 98×1796 = 176008 predictions to make.

4 Understanding the data
Before running any algorithm on the massive dataset, we
wanted to get a grasp on the kind of influence some of the fea-
tures had on the output. So, we took the weather parameters
that seemed the most meaningful to us and plotted heat maps.
On figures 4 and 5, we can qualitatively distinguish the areas
where there is more clouds from those having clearer skies,
and also where the solar flux is the highest. Naturally, when
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overlapping figure 5 and figure 1, we can notice that shortwave
flux has a great impact on the eventual output. It is not the
only factor though. The West-East distribution of clouds with
the clouds being more frequent in the East, will also probably
have high negative correlation with the output. We will verify
later these correlations.

Figure 4: The cloud cover varies a lot along the West-East (clear-
cloudy) direction.

Figure 5: The downward short wave radiation flux represents the
radiation coming from the Sun.

Then, we also wanted to have some more quantitative pre-
analysis, by measuring the correlation between the factors and
the response. Scatterplots were useful in giving a visual esti-
mate of the kind of correlation between them: linear, polyno-
mial, inverse... For example, on figure 6 we can observe that
when there have been more than a certain amount of clouds
in a day, then the solar energy is very low. This relationship
is unlikely to be only linear, but it could be linear piecewise
(solar energy decreasing until zero).

5 Regression methods
To be able to compare our approach to others’ (Kaggle leader-
board), we have used the MAE3 formula to calculate the error.
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Figure 6: The scatterplot provides us a way to use our scientific
intuition.

The mean absolute error is commonly used by the renewable
energy industry to compare forecast performance. It does not
excessively punish extreme forecasts.

5.1 Simple linear regression
We started with a simple linear regression to make our first
predictions. Hence the forecasted daily incoming solar energy
for each day and Mesonet site was:
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To determine the coefficients θk we have trained our model
by minimizing
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To assess the bias variance trade-off, we have divided the
training set into two subsets: the first one with the data from
1994 to 2006 (12 years) used as the training set, and the other
one with the data from 2007 to 2008 (2 years) used as the
validation set. We have trained different models by varying the
size of the training dataset and computed the corresponding
cross-validation error on the validation test. Then, we have
plotted both the training and test MAE of each model to show
the ”learning curve”, on figure 7.

The learning curve for the linear regression model shows the
evolution of the learning and testing errors. For 304 predictors,
the sample does not seem to be large enough below 10 years.
From 10 to 12 years of training samples, for a testing set of
2 years, MAEs converge and it seems that we train a model
without too much bias nor too much variance. So, it seems
that 12 years of data should be enough to train a model of 304
features.
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Figure 7: Learning curve for a simple linear regression: training set
within 1994-2006 (1 to 12 years), testing set from 2007 to 2008 (2
years).

We could then apply our model to the full training set to get
predictions for the Kaggle testing set. It took about 20 minutes
to run on the corn.stanford.edu machines. With the first sub-
mission, we reached the 80th/160 position in the competition.

If we did not have the test error calculation module provided
by Kaggle to evaluate our next models, we would have calcu-
lated the evolution of the test learning curve for the different
models adopted. On figure 8, we can see that the models get
more and more accurate with an increasing sample size.

And then, we have tried to use other more advanced models.

5.2 Lasso and Ridge
As an alternative to a Simple Linear Regression, we can fit
a model using techniques that shrink the coefficient estimates
towards zero, reducing their variance and making more stable
predictions. We have selected two different methods, Ridge
and Lasso. Ridge regression minimizes

RSS(θ) + λ

304∑
k=1

θ2k

Lasso regression in addition to constraining the coefficient es-
timates, performs feature selection by setting certain coeffi-
cients exactly to 0. It minimizes

RSS(θ) + λ

304∑
k=1

|θk|

λ is a tuning parameter that controls the shrinkage of the co-
efficients. The optimal value of shrinking was obtained by
cross-validation on the training dataset.

5.3 Random Forests
Then, we wanted to try more complex methods that could han-
dle the large number of features and the highly non-linear and
complex relationship between the features and the response of
the data, that has been observed during the first visualizations
of the data. Tree-based methods (decision trees) seemed to be
a good match.

Random Forests builds a large number of decision trees by
generating different bootstrapped training data sets and aver-
ages all the predictions. But when building these trees, each
time a split in a tree is considered, a random sample of m pre-
dictors is chosen from the full set of p predictors. The classi-
fiers may be weak predictors when used separately, but much
stronger when combined with other predictors. Randomness
allows weak predictors to be taken into account and uncorre-
lates the trees.

Two tuning parameters are needed to build a Random
Forests algorithm: the total number of trees generated and
the number of features randomly selected at each split when
building the trees. To determine optimal values for those two
parameters, we have run several cross validation models and
selected those which gave us the best results. We have started
with values around those given in the litterature[2] (Typically
a good value for m is

√
p which is around 17 in our case) and

explored the different learning curves given by models. Even-
tually, we ran our Random Forests algorithm with 15 predic-
tors on 3000 trees.

Figure 8: Learning errors (MAE) for different models.

5.4 Models comparison
On figure 8, we can see that the most successful models are
given by using Random Forest methods (6% more accurate
than linear regression, 54th on the Kaggle board).
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6 Additional features
To help our predictions, we have tried other features: as En-
vironmental Engineers, we know that the incoming solar ra-
diation to the Earth heavily depends on two main parameters,
the time of the year and the location. But we have also added
other parameters:

1. time: the incoming solar energy high relies on the spatial
position of the Sun, which depends on the seasons, so we
have added a categorical feature to factor the month of
the prediction day.

2. location: the solar incident varies with the latitude, but we
have also added the longitude of the Mesonet site as we
have observed graphically that the irradiation also relies
on the longitude, even though this may not apply to other
places (see figure 9)

3. altitude: we have found a high correlation between lon-
gitude and altitude (and irradiation) in Oklahoma, so we
have also added the altitudes of the sites and GEFS sta-
tions.

Figure 9: Average monthly insolation

7 Results analysis
With these additional features, we have submitted another pre-
diction file to Kaggle. It reduced our MAE by 9% (40th
on Kaggle), compared to predictions made by the Random
Forests algorithm on the raw data alone.

On figure 10, a visualization of the relative errors shows an
accuracy of our predictions of 9 to 15%, which is quite satisfy-
ing. We can notice that the error values tend to be larger on the
eastern part of the plot, whereas the smallest error values are
located on the western side. Keeping in mind the 3-hour sam-
pling of the weather data, very sudden changes in the weather
parameters cannot be noticed in averaged datasets. Therefore,

the prediction of solar power can be less accurate in ”wet” cli-
mates (such as the East of Oklahoma) due to the higher vari-
ability of weather (clouds, precipitation), than for ”arid” cli-
mates (such as the West of Oklahoma).

Figure 10: Relative MAE plot for each site

Our last task was about identifying the main features of the
model: it turned out that the upward solar flux features were
much more informative than the downward ones. Indeed, the
upward flux directly reflects the amount of energy that is re-
flected back to the atmosphere, that is a fraction of the incident
irradiation that actually hits the ground.

8 Conclusion
This machine learning project was our first hands-on experi-
ence with real big data. The project was about data prepa-
ration for a big part: it involved data understanding, sorting
and reframing. Then, we had to think about ways to run our
algorithm, as we needed machines capable of handling about
2GB of input data at once. It was challenging, but that made
us really think about ways to save time and resources: how to
reduce the computational load of our code, how relevant it is
to make backups of intermediate files, how useful it is to run
calibration test algorithms before launching codes that would
run for tens of hours.

It was definitely challenging to work with this big data. We
have also learnt a lot about implementing algorithms in real
life, as we were not working in a fully academic environmental
anymore.

And finally, as we tried to understand the different correla-
tion relationships between the parameters and the forecasts, we
surprisingly also got a better understanding of solar prediction
from an energy engineer point of view.
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