
Unsupervised Approaches to Detecting Anomalous Behavior in the Bitcoin
Transaction Network

Jason Hirshman
Stanford University

Department of Mathematics
Stanford, CA, USA

hirshman@stanford.edu

Yifei Huang
Stanford University

Department of Computer Science
Stanford, CA, USA
yifei@stanford.edu

Stephen Macke
Stanford University

Department of Computer Science
Stanford, CA, USA

smacke@stanford.edu

I. INTRODUCTION

Bitcoin is an electronic crypto-currency created in 2008
by Satoshi Nakamoto (pseudonym). At the time the original
bitcoin client was written, the idea of a purely peer-to-peer
(P2P) digital currency which did not require a trusted-third-
party to confirm transactions / prevent double spending was
unique. In the bitcoin network, all transactions are public, ef-
fectively rendering double-spending impossible. A criminal
who wishes to double-spend or falsify some segment of the
transaction history must convince the majority of the bitcoin
network that his transaction history is correct, but in order
to do that, he must provide the appropriate proof of work.
Under the assumption that the majority of the network is
honest, the criminal would have to have more computational
power than the majority of the network in order to falsify
the transaction history, as described in [1]. Since the onset
of bitcoin, several other crypto-currencies have sprung into
existence, but bitcoin continues to be the most popular.

Because transactions in the bitcoin network are specified
by the public keys of the payer and payee, some level
of anonymity is guaranteed provided public keys are not
traceable to real-world identities. For criminal organizations
and others using bitcoin which require strong anonymity,
this is not enough, so a so-called “mixing service” is
employed. The mixing service takes in bitcoins from a group
of individuals requiring strong anonymity, sends the coins
around randomly in an attempt to obfuscate their origins,
and then sends similar amounts of bitcoins back to new
addresses specified by the individuals using the service. This
is discussed in more detail in [2].

For our CS229 project, we were interested in using
machine learning techniques to explore a dataset of bitcoin
transactions; in particular, we were interested in exploring
the anonymity guarantees of the bitcoin network. The ques-
tions we were hoping to answer are:

1) Can we cluster the dataset in order to make exploration
easier?

2) Can we detect attempts at money laundering / mixing
services?

3) Can we trace the outputs of a mixing service back to
its inputs?

While tracing mixing service outputs to the corresponding
inputs eluded us due to the complexity of mixing services,
we do believe we made some headway on their detection.
In the subsequent sections, we describe the dataset we are
using and the initial preprocessing performed upon it. We
then describe an initial attempt to explore the dataset by
clustering hubs (our term for users with high numbers of
transactions) based on a particular feature set, first using the
K-means algorithm then by applying an unsupervised learn-
ing algorithm, “RolX”, which assigns our users to various
roles. Finally, we note some interesting, anomalous behavior
that we were able to discover thanks to our unsupervised
restructuring of the dataset.

II. DATA

The bitcoin dataset was obtained from [3], generously
made available by Ivan Brugere. It contains information on
all transactions up through May of 2013, and provides a
nice relational structure. The relational schema is detailed
in figure 1.

A. Resolving Public Keys into Users

The dataset uses techniques from [4] in order to perform
an initial clustering of public keys into the coarser notion of a
“user.” Briefly, two public keys may be assumed to belong to
the same entity if they both appear as inputs to a particular
transaction, since this means that whoever authorized the
transaction had access to both corresponding private keys.
Thus, the “users” as given in the dataset are probably not
totally accurate; in reality some of them probably need to
be merged.

B. Granularity of the Data

The dataset indicates transactions at a user-to-user level,
but not at an “address-to-address” level; that is, it does not
specify, for a particular transaction, precisely which keys
were involved, or how many bitcoins moved to particular
keys. We are interested in this information for future work

with this dataset; particularly, this finer-grain detail is of
interest for trying to detect mixing, and also for trying
to further resolve public keys into “users.” Fortunately,
even though this finer-level detail is not explicitly stored,
the transaction keys and public keys associated with each
transaction are specified, and the finer detail may thus be
queried from the bitcoin blockchain.

Figure 1: Relational diagram for bitcoin data.[3]

III. K-MEANS

A. Summary of Method

K-means is a heuristic method used to partially solve the
NP-hard problem of clustering some number of observations
into K clusters, where the sum of the Euclidean distances
between each observation to its centroid is minimized. [5]
To better understand our dataset, we used K-means to cluster
the users into groups with similar features. Since the data
contains over 6.3 million “users” (defined as a set of public
keys), we selected the high-transaction-traffic users (hubs,
as defined previously) for preliminary analysis. This allowed
us to look at a more interesting subset of the data without
requiring enormous initial computational power. The subset
included users with 650 transactions or more, resulting in a
subgraph of 6,058 hubs.

For each hub, features were selected based on the prop-
erties of the hub and its children, or other users with whom
the hub has interacted with. The following 15 features were
selected:

• The hub’s degree (total # of transactions), in-degree
(total # of receiving transactions), and out-degree (total
of sending transactions).

• The mean and variance of the childrens’ total degree,
in-degree, and out-degree

• The mean and variance of all the transactions amounts,
incoming transactions amounts, and outgoing transac-
tions amounts

These correspond with so-called “egonet” features as de-
scribed in [6].

We normalized or “whitened” the feature vectors so that
all features were weighted equally. Because the K-means
results are sensitive to the initialization of the centroids,
the centroids were selected ramdomly from a Gaussian
distribution with mean and covariance matrix estimated from
the data provided. K-means was run with 1000 iterations
for various number of clusters with different random ini-
tializations. To determine the optimal number of clusters,
we decreased the number of clusters until the drop in
“error”, or the sum of the distances from each point to its
corresponding centroid, was not as significant. Through this
method, we determined that the optimal number of clusters
is 5, although, as we discuss shortly, two of these clusters
were necessary for only a few outlier observations.

B. Clusters

0 1 2 3 4 5 6
Mean Degree ×106

100

101

102

103

104

H
u

b
C

ou
nt

Mean Degree of Hub Children

0 1 2 3 4 5 6
Degree Variance ×1013

10−1

100

101

102

103

104

H
u

b
C

ou
nt

Variance of Degree of Hub Children

Figure 2: Features corresponding to non-outlier clusters. Each
graph is for a particular feature, and each cluster corresponds to a
particular color. Note: The darker turqoise in these graphs actually
corresponds with the lighter turqoise in the graphs of figure 3; the
reason it appears darker in this set is because the histograms are
denser. Lastly, the pink outlier clusters do not appear in this set
because they are grouped very close to the “0” mark.

After clustering using k = 5, the vast, vast majority of
hubs fell into three categories, corresponding to the three
colors in figure 2. The features which were most important
in determining these clusters were:

1) Mean node degree of other users transacted with.
2) Variance of node degree of other users transacted with.
Unfortunately, this does not tell us very much apart from

the fact that some hubs have transacted with users with
more transactions than others, and that the users with more
transactions are spread over a wider range in terms of
number of transactions.

The interesting bits of our initial results come from the
other two clusters – one of which contains 5 hubs, and

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Mean Transaction Value ×103

10−1

100

101

102

103

104

H
u

b
C

ou
nt

Mean Transaction Value at Hub

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Transaction Value Variance ×108

10−1

100

101

102

103

104

H
u

b
C

ou
nt

Transaction Value Variance at Hub

Figure 3: Frequencies at which feature values appear for
those features that contributed to the outlier clusters, both
colored pink. Note that certain clusters do not appear be-
cause they are so close to the “0” mark. The turquoise,
though not an outlier cluster, is not so close to the “0” mark
to completely disappear.

the other which contains a single hub. As seen in figure
3, the features which segmented out these clusters (both
colored pink, for the sake of simplicity) corresponded to
mean transaction amount and transaction variance of the
hub. For whatever reason, these hubs had enormous variance
in transaction amount when compared with the other hubs
– they tended to be both “big spenders/receivers” and
“inconsistent spenders/receivers.” This in and of itself is a
simple type of anomaly since it means that these hubs were
engaged in transactions which were worth very little, but
also in transactions worth many thousands of bitcoins.

IV. ROLX

A. Summary of Method

To validate and expand upon the results of the K-means
clustering, we attempted to assign roles to the different hubs
based on the same features. [7] proposes an unsupervised
learning algorithm called RolX (Role eXtraction) which
seeks to classify nodes of a graph into various classes termed
“roles.” These roles contain nodes with similar structural
features in the sense that they have the same connectivity
structure within the graph. For example, one role might con-
tain those nodes that are part of highly-connected subgraphs
or alternatively those nodes that have a disproportionate
number of incoming edges. RolX performs role discovery by
factoring the feature matrix into two nonnegative matrices.
Given n nodes (or in our case, hubs) and f features,
construct a matrix Vn×f and factorize it into nonnegative
matrices Gn×r and Fr×f where r is a chosen low rank. In
other words, find:

argmin
G,F

‖V −GF‖, G, F ≥ 0, G ∈ Rn×r, F ∈ Rr×f

where ‖A‖ =
√∑

i,j a
2
ij is the Frobenius norm. This

factorization reduces the dimensionality of the data and
provides a representation of the feature matrix as linear
combinations of the r roles.

The factors are computed iteratively by applying the
multiplicative updates, given in [8], as follows:

F
(t+1)
bj := F

(t)
bj

[(G(t))TV]bj
[(G(t))TG(t)F (t)]bj

G
(t+1)
ia := G

(t)
ia

[V (F (t+1))T]ia
[G(t)F (t+1)(F (t+1))T]ia

for every j in the range 1 . . . f , i in the range 1 . . . n, and
a and b in the range 1 . . . r.

However, before factorization, RolX first provides a
method for choosing an appropriate value for r. The al-
gorithm calls for minimizing the model description length
which is defined to be the sum of the cost of representing
the model in memory and the cost of correcting the errors.
This minimization is done by computing the matrices G,F
for various values of r.

Unfortunately, we were unable to follow this minimization
procedure, as it calls for using KL divergence to measure
the cost of error correction which is not feasible given the
presence of zero-valued features. KL divergence was chosen
since [7] found that the model errors were not normally
distributed, but we believe that the Frobenius norm can still
be applied to choose the parameter for our purposes since
we are not as concerned with whether two roles may be
merged or separated unnecessarily, as we are instead trying
to find the outlier roles with very few members.

Prior to factorizing the feature matrix for our data, each
column was normalized by dividing the column by its mean
(a column corresponds to a single feature). In this way, the
non-negativity of the data was preserved while still ensuring
that no one feature dominated the role selection. Figure 4
shows the results of factorizing the feature matrix with r
ranging from 2 to 8. It was found that when r was greater
than seven, the factor matrices were not of full rank which
means that more than seven roles were unable to isolated
when optimizing those matrices. r = 7 was chosen as it
minimized the error, ‖V −Gf‖.

2 3 4 5 6 7 8
Number of Roles (r)

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

F
ac

to
ri

za
ti

on
E

rr
or

Factorization Error vs. Matrix Rank (# Roles)

Figure 4: We found the optimal number of roles occurred at
r = 7.

B. Roles

Upon choosing the target number of roles, the factoriza-
tion was once again completed, and the hubs were placed
into arrays according to their most prominent roles. The most
prominent role was chosen by taking the maximum over the
hubs row in the G matrix which contains the coefficients
for reproducing a hubs feature values by taking a linear
combination of the role characteristics in the F matrix.
Two roles had between 1500 and 2500 members; three had
between 500 and 1000 members; and two had 6 and 15
members. These last two were examined more thoroughly
to determine whether there was overlap with the anomalies
found through clustering.

The weights in the F matrix reveals that these two roles
were distinguished by their heavy weight on the variance of
transaction values which also distinguished the anomalous
clusters from the more populous clusters. The two roles
only differed themselves in that one role most heavily
weighted the variance of the incoming transaction values
whereas the other most heavily weighted the variance of the
outgoing transaction values. Moreover, there was overlap in
the membership of these roles with the membership of the

small clusters, i.e. the set of hubs in the anomalous clusters
was similar to the set of hubs in these two roles.

This overlap between the two algorithms validates our
later choice to investigate those users with high variance in
transaction values. Intuitively, it makes sense that mixing
services would be involved in high variance transactions, as
they could service patrons of vastly different wealth.

V. EXAMPLE MIXING

Before we investigate our outlier users, let us look
at an example of mixing in action. In order to get
an idea of what to look for, we ran a small num-
ber of our own bitcoins through the mixing service
http://app.bitlaundry.com/. Again, because all
bitcoin transactions are public, we were able to trace some
of the mixing through the blockchain.

Figure 5: Example mixing in action. Notice how the trans-
actions appear to recursively split the bitcoins and send to
two new addresses.

As you can see, the mixer seems to be forming a com-
plete binary tree of transactions, dividing the coins at each
successive address and sending to two new addresses. If we
trace further along, we will then find that some of these
addresses will then pool their bitcoins together with other
coins which were split up in a different series of transactions.
This continues for many iterations, making it quite difficult
to determine to whom the coins originally belonged by the
time they make it to their destinations.

VI. INVESTIGATION

Because we do not have transaction details at the level
of individual public keys, we are limited by the analysis we
can perform with this dataset alone. Fortunately, such fine-
tuned granularity is available since, as previously mentioned,
the entire blockchain is publically available on sites such as
http://blockchain.info.

Looking through some of the transactions involving
public-keys on the anomalous users, we noticed some in-
teresting behavior. As an example, let us follow some trans-
actions of a particular user, heretofore referred to as “user
X .” In what follows, we will refer to public keys by the first
4 characters of their SHA-256 hashes. In June 2011 (when
bitcoin prices peaked at $17 per coin) we see that user X
sent 132 thousand bitcoins from address 1MCZ to addresses
1Cc2 and 1Q4E. 1Cc2 received 82 thousand bitcoins, and
1Q4E received 50 thousand bitcoins. Furthermore, we see
that on the same day, 1Cc2 sent 32 thousand bitcoins to
18UF, and 50 thousand bitcoins to 15oG. Next, 15oG sent
part of the 50 thousand coins it received to address 1eHh as
part of a 424 thousand bitcoin transaction. The remainder
went to another address.

Notice that, in the cases of 1MCZ, 1Cc2, and 15oG,
they sent all of their bitcoins to other addresses in a single
transaction by splitting the money between two receiving
addresses. We have only followed a single path along the
transaction tree, and the interesting thing is that if we follow
other paths, we see this behavior repeated. That is, 1Q4E
also sends all of its coins to precisely two addresses, each
of which send all of their coins to precisely two addresses,
and so on. It is as though user X is recursively splitting the
initial 132 thousand bitcoin fortune, as we described in the
previous section.

The really interesting thing, however, is what happens at
the end of some of these splits. In the case of 15oG, it
sent part of its coins to 1eHh as part of a 424 thousand
bitcoin transaction. This means that other addresses were
also involved in this massive transaction. If we trace other
transaction paths down, we will see that, for example, money
from 1Q4E also ends up going to 1eHh as part of the same
424 thousand bitcoin transaction. This result is summarized
in figure 6.

Figure 6: User X splits a large fortune, some of which ends
up at 1eHh, from multiple intermediate addresses.

Thus we see that user X appears to be splitting a large

sum of money, but then sending portions to the same public
key. This seems suspicious. Under normal circumstances, it
seems like somebody who wants to send money somewhere
all in the same day should have no need to route it to that
spot through a bunch of intermediate places. This suggests
that we could be looking at a mixing service or some other
suspicious service in action.

VII. CONCLUSION AND FUTURE WORK

Unsupervised learning techniques revealed anomalies in a
large bitcoin transaction network. We were able to identify
certain users that conducted transactions in an atypical
fashion, one that suggested some sort of money laundering.

Unfortunately, we have no way of proving our suspicions,
as we do not have labeled data that points us to cases of these
hypothesized mixing services. However, our work here could
help pave the way for future clustering techniques, especially
by allowing one to choose features that are more revealing
of patterns in the data.

The unsupervised learning algorithms we applied, K-
means and RolX, ended up achieving our intended ends of
locating strange behavior in the network. Through clustering
and role detection, we now have a much better idea of what
to look for in a suspicious transaction, or, in particular, a
string of suspicious transactions. Additional work should be
done to both categorize and quantify these anomalies.

REFERENCES

[1] Nakamoto, Satoshi. Bitcoin: A peer-to-peer electronic cash
system. 2008. http://bitcoin.org/bitcoin.pdf

[2] Bitcoin Forum. https://bitcointalk.org/index.php?topic=241.0

[3] Brugere, Ivan. Bitcoin Transaction Network Dataset.
http://compbio.cs.uic.edu/data/bitcoin/

[4] Reid, Fergal, and Martin Harrigan. “An analysis of anonymity
in the bitcoin system.” Security and Privacy in Social Net-
works. Springer New York, 2013. 197-223.

[5] MacQueen, James. “Some methods for classification and
analysis of multivariate observations.” Proceedings of the
fifth Berkeley symposium on mathematical statistics and
probability. Vol. 1. No. 281-297. 1967.

[6] Henderson, Keith, et al. “It’s who you know: graph mining
using recursive structural features.” Proceedings of the 17th
ACM SIGKDD international conference on Knowledge dis-
covery and data mining. ACM, 2011.

[7] Henderson, Keith, et al. “RolX: structural role extraction
& mining in large graphs.” Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2012.

[8] Seung, D., and L. Lee. “Algorithms for non-negative matrix
factorization.” Advances in neural information processing
systems 13 (2001): 556-562.

