
Detecting Web Pages with Events
Matan Zinger Junmin Hao

mzinger@stanford.edu junmh@stanford.edu

ABSTRACT
The semantic web is a concept being promoted by the World Wide Web Consortium,

with the vision of allowing machines to “understand” web‐pages, without maintaining scrapers of human‐visible HTML.
This structured markup in web‐pages have recently been powering features in Google Search, such as Rich Snippets[0].

The project purpose is detecting web pages that contain information about events, based on the main text in the page.
Thus making it possible to reach the websites’ owners, suggesting they add structured data for the events in their site.

1. INTRODUCTION
Traditionally, web pages were designed to be read by
human beings. Web visualization technologies have
been evolving significantly fast over the last two
decades, allowing websites to provide rich visibility
to their users. In parallel, a growing trend of
“scrapers” has been taking place, powering systems
that utilize information aggregated from other
sources in the web. While some of these “scrapers”
may be considered spammers, others actually create
a mutable benefit for both the content provider and
consumer (e.g. a video store website presenting IMDB
reviews and ratings before rental, and encourage
customers to add a review to IMDB afterend).

The biggest pain is that making machines
“understand” information modelled in a fashion
designed for human consumption (such as HTML) is a
tedious task that requires frequent maintenance. An
alternative might have been having websites provide
public API to access the data presented in their web
pages, but a proprietary API would also make data
integration an effort‐consuming task.

During the last decade, the semantic web initiative
created open standards for defining structured data
on top of web‐pages, as well as standards for
repositories and query languages on top of them,
making it possible to build semantic applications.

Google also contributes to the semantic‐web vision,
by utilizing structured markup detected in web‐pages
in different Google Search features. The most famous
of which being Rich‐Snippets. These improve both the
experience of a user going through web results, as
well as allowing website to surface further
information in its search result snippet.

The purpose of this project is to utilize signals from
webpage textual content in order to detect pages
that contain information about events, making it
possible to make a mass outreach to event website

owners, with a suggestion (and instructions) regarding
adding events structured data to their websites.

The approach we take is building a quick basic
classifier, keeping in mind possible optimization steps
that could be taken in the future, in order to evaluate
the initial performance and choose the enhancements
that would yield the best impact on our classifier.

Our preference is as high precision as possible, even
by hurting recall, since the effect of sending “spam”
suggestions to webmasters is very undesirable.

2. DATA GATHERING & PRE‐PROCESSING

In order to gather a labeled set of web URLs, we have
used the Open Directory Project (ODP)[1], which
contains an hierarchical set of over 780,000
categories. In each category, a few URLs that were
placed after a human process of content evaluation.

In order to gather positive examples, we have
selected all hierarchical categories where the leaf
category is “Events” (e.g.
‘Top/Sports/Running/Events’,
‘Top/Arts/Entertainment/Events’).

In order to gather negative examples, we have
selected all category paths that did not contain an
“Event” topic in any of the path element (e.g.
‘Top/Arts/Crafts/Paper’,
‘Top/Business/Arts_and_Entertainment/Photography
/Photographers’).

Once gathered the lists of positive and negative
example URLs, we have taken the following
processing steps per each URL:

● Fetching & Text Extraction
The ‘boilerpipe’[2] open source (under Apache
License 2.0) library in order to fetch the content
of these URLs, parse the HTML, discard
boilerplate[3] and extract the main text content
of the URL.

1

mailto:hjm@stanford.edu

● Stemming
In order to avoid contribution of specific
inflections, words were reduced to their root
form (stem) using a python implementation of the
Porter stemmer[4].

● Transforming into term vector
The last data‐processing step we’ve done is
transforming each document into a term vector
(by using 80,000 different tokens as features).

Having a set of 3,000 examples, represented as term
vectors, we splitted is it a random fashion into a
training set (with 70% of the documents) and a test
set (the rest of the documents). While doing so, we
made sure each ODP category in use has
representatives in both training and test sets.

The training set was splitted in a similar fashion into
subsets, making it easier to measure the learning
rate, as well as performing cross validations.

3. CLASSIFICATION

The algorithms we have evaluated were:
● Naive Bayes with Laplace smoothing.
● Linear L2‐regularized L2‐loss soft‐margin

Support Vector Machine.

Per each, we trained a model with the different
subsets of the training set (each produced a
classifier). We measured the error rate of both the
training set and test set with each classifier.

+ Naive‐Bayes

The most indicative terms for events: m42, ct,
marathon, fundraiserjoin, m40.

+ Support Vector Machine

Since both algorithms have shown similar levels of
accuracy during the first execution, we have also
measured the Precision and Recall (The numbers in
the table below are the numbers of positives or
negatives divided by the number of test examples):

Actual: Positive Actual: Negative

NB Positive 0.7658 0.1287

NB Negative 0.0277 0.0777

SVM Positive 0.7469 0.0821

SVM Negative 0.0466 0.1243

Naive‐Bayes Precision: 0.8561; Recall: 0.9650.
SVM Precision: 0.9009; Recall: 0.9413.

4. PERFORMANCE ANALYSIS

As these are the components of our classification
pipeline, the following parameters essentially
determine the classifier quality:

● Webpage cleansing
● Text pre‐processing
● Choice of terms list
● Features (except term frequency)
● Choice of algorithm
● SVM‐Choice of algorithm parameters:

regularization term, soft margin C.
● Choice of test set

While building the initial execution, we had ideas of
how to improve all of the above (in more than one
manner). However, we intend to try and evaluate
which of these could yield the best improvement in
classification quality.

2

A strongly noticeable problem is the 3 meaningless
terms out of the 5 most indicative terms in the
Naive‐Bayes classifier. This can be either due to the
intrinsic flaw in NB, or due to our over‐permissive
policy to consider every possible term. However
extremely noticeable, we preferred further analyzing
the results, before choosing our next step.

Considering our strong preference for precision, the
SVM seems like a better candidate to be examined
(given the lower false‐positive rate it yielded).
Judging from the learning curve ‐ both the extremely
low training error rate, and the fact that the
marginal improvement in accuracy is negligible,
indicate a problem of overfitting. In order to reduce
variance, useful steps would be using less features
and then using more training examples.

In addition, in order to reduce the variance of the
SVM‐based classifier, C should be reduced.

5. PERFORMANCE OPTIMIZATION

While the previous steps were mostly about gathering
data and establishing a classification baseline, the
next purpose was improving quality (mainly ‐
precision.) We therefore engaged in the following:

● Increasing Training Examples Set

The first action we took towards solving the variance
problem was to gather more training examples.

In order to gather more negative examples, our
boiler‐pipe based pipeline was fetching the data of
3700 additional non‐event URLs, all of which were
retrieved from the ODP dataset. we found it
important to increase the proportion of the negative
examples, after noticing the positive examples are
strongly correlated with stop‐words. We eventually
increased the negative portion from 20% to 42%.

In order to retrieve additional positive examples
(after using all positive examples found in the ODP
dataset), we have used the Sindice© (semantic web
index)[5], and executed a query for URLs that have
already been marked up with Structured Data of type
‘http://schema.org/Event’. We suspected that using
an additional source for URLs (other than ODP) would
increase the diversity of texts, and might be useful in
facing the overfitting sample.

This yielded additional 3500 positive examples, Thus
concluding an increase of the data‐set from 3000 to
10,200 documents.

Using a 2000 documents test set, the plot still seem
like a typical high‐variance case, but the increased
set still improved accuracy by 1.86 percentages.

● Additional Pre‐Processing Steps

At the previous step, we’ve noticed the indicative
terms seems radnsom (such as ‘m42’). We’ve added
the following steps in order to eliminate these terms:
(1) Filtering nondictionary terms: We have used the
English words list included in the Unix file system (at
/usr/dict/words) to filter nonEnglish words.
(2) Identification of URLs and email addresses: We
have defined regular expressions for this purpose, and
replaced these instances with a predefined tokens
(‘EMAIL’ / ‘URL’).
(3) Filtering of singleletter terms.
(4) Filtering stopwords: useing the Ranks.NL[6] list.

These additional steps have reduced the number of
tokens from 198,742 to 25,048. As overfitting is our
main problem, and reducing the feature set is one of
the main methods in solving it, we chose eliminating
meaningless features as the first step in this regard.

3

This activity have also made the indicative terms list
appear to be much more relevant for the events case:
'event', 'festiv', 'toggl', 'ticket', 'particip', 'saturday', 'share',
'mathemat', 'password', 'address', 'venu', 'sponsor', 'descript',
'sunday', 'workshop', 'attend', 'twitter', 'date', 'circl', 'notifi', 'friday',
'miss', 'qualiti', 'busi', 'music'.
(Tokens appear in their post‐stemming format.)

● Tuning (Reduced) Value of C

Another step aimed at reducing variance ‐ we have
used the k‐fold cross validations technique in order to
examine different values of C, with setting K=6, and
calculating the error rate for each value:

{h (x) = }ε(C=c) = 1
K ∑

K

i = 1
∑
|S |i

j = 1
1 (C=c,S∖S)i i

(j) / yi
(j)

Where:

* : ith slice of the examples set, out of KS i
equally‐sized slices.

* : the hypothesis function generated whenh
(c,S)
�

training the SVM algorithm with C=c over a subset S
�

of the examples set S.

* : the jth data point in the examples subset .xi
(j) S i ¦ S

* : the label corresponding to .yi
(j) xi

(j)

Using the 6‐fold method, we’ve also counted the
number of true‐positives, false‐positive,
true‐negatives and false‐negatives, in order to
calculate the precision and recall rates for each
possible value of C. The results:

C Test Error Precision Recall
1.0000 19.07% 83.64% 83.32%
0.5000 18.74% 83.93% 83.59%
0.2500 18.37% 84.18% 84.02%
0.1250 18.07% 84.45% 84.27%
0.0625 17.58% 84.87% 84.72%
0.0312 17.13% 85.17% 85.23%
0.0156 16.82% 85.45% 85.46%
0.0078 16.73% 85.66% 85.36%
0.0039 16.55% 85.86% 85.44%
0.0020 16.4% 85.93% 85.65%
0.0010 16.51% 85.93% 85.43%

The optimal value found is C = 0.002; the accuracy
has been improved by 3.07 percentages, and precision
by 2.39 percentages.

● Feature Reduction

We were looking to further eliminate features;

First, we implemented “Filter Feature Selection”,
with two feature scorers: mutual information, and
indicativeness score (described in HW2 Q3b). Accuracy
did not improve, as seen below:

However, the positive outcome was raising the
necessity in a larger portion of negative examples,
since in the initial 80%‐positive data set, even a
dummy model that always predict positive yields 80%
accuracy. Therefore we’ve increased the negative
proportion to 43% (as previously described.)

The next method we tried was Backwards Feature
Search (over the 25,040 features in the 10K data set).
First, we removed infrequent tokens (i.e. with less
than 8 appearances), to reduce feature set size to
10K. In order to speed the search, we’ve used 2‐fold
cross validation ‐ the fastest possible setting.

At each backwards‐search step, the program iterates
over all features, and looks for the feature thatf i

minimizes: {h (x) = },εi = 1
K ∑

K

j=1
∑
|S |j

t=1
1 (F∖{f },S∖S)i j i

(j) / yi
(j)

Where , , are as previously described, andS i xi
(j) yi

(j)

 is the prediction function generated whenh(F ,S)
� �

training over a subset and a subset ., S
�

¦ S F
�

¦ F

This feature shall be discarded at the end of the step.
After 63 iterations (only 0.6% of all features), the
accuracy has increased from 83.6% to 83.85%.

However, each iteration took 40 minutes to run, and
completing the algorithm could take up to a month.
Therefore we looked to speed up this process, by
executing each iteration in a parallel fashion: the
errors per each feature removal () shall beεi
computed in parallel, and when all tasks complete,
the minimal results indicates which feature to drop.
However, due to MATLAB licensing issues, we could
not have ran this version before the deadline.

4

● Tuning for Better Precision

Training a SVM model yields values for w and b. Given
a data point x, the amount is the γ = w • x + b
distance from x to the decision boundary. By default,
when , the model predict it as a positive, andγ > 0
negative when . The larger is, the moreγ < 0 γ
confident the model is about x being positive.

Therefore we can use a threshold T (different than
zero) to modify how we make the prediction, that is,
when yields a positive prediction, and negativeγ > T
otherwise. By tuning T, we could control the
confidence for positive predictions (i.e. precision).

It’s important to note that the threshold actually
controls a precision/recall tradeoff, and by increasing
precision, the recall rate decreases.

Precision tuning results:

The precision seem to have an upper bound around
96.25%, where threshold = 0.7, recall rate = 50.56%.
As the threshold further increases, the recall rate
eventually drops to 6.83% at T=3, at the precision
rate only increased to 97.04%.

6. Summary & Conclusion

Our work was mainly composed of 3 major activities:

First, we followed the practice of quickly building an
initial version of the classification system (to be
gradually enhanced based on experiments results.)
We’ve implemented a basic platform to fetch and
process web pages into term vectors (based on
common practices), implemented the two text
classification algorithms learned in class.

Second, we’ve analyzed the results, which indicated
an overfitting problem.

Third, we’ve applied the practices given in the

learning theory lectures, and implemented all the
methods efficient at reducing variance; The most
effective method proven to be reducing C, which
improved accuracy by 3.07 percentages. Second,
adding training examples increased accuracy by 1.86
percentages. Third, backwards search improved
accuracy by 0.25 percentages, and further iteration
could yield more improvement.

Last, we’ve tuned the level of confidence for
considering a web‐page as being about an event, and
found a value for which precision is over 96%, and
recall is 50.5%. While in general this is not necessarily
a good result, it could very well fit the specific case
we would like to solve;
Our classifier could potentially make it possible to
find half of the event web‐pages on the web, and
approach their owners with high (>96%) confidence,
to suggest adding semantic event markup.
That being said, testing over larger tagged web‐pages
sets is required in order to verify this statement.

7. Future Enhancements

In order to further improve the classifier, the first
step we would have take is to complete the feature
reduction process, by being able to make a parallel
execution of the backwards search algorithm. This
can initially be done on the cores of a single machine,
as we described in the last paragraph under “Feature
Reduction”.

Another possible enhancement is in the preprocessing
pipeline: currently phone numbers, dates and
geo‐locations are being filtered out on the account of
not being in the English words list. However, since
dates and locations are the major properties of an
event, we speculate that these could be indicative
signals. In order to examine that, a method to detect
such terms should be plugged in, and map them into a
constant term (similar to what’s being done with
URLs and email addresses).

REFERENCES
[0] “Rich Snippets ‐ Events” ‐
http://support.google.com/webmasters/answer/164506
[1] http://www.dmoz.org/docs/en/about.html
[2] http://code.google.com/p/boilerpipe/
[3] Christian Kohlschütter, Peter Fankhauser, Wolfgang Nejdl.
“Boilerplate Detection using Shallow Text Features”
[4] M.F.Porter. “An algorithm for suffix stripping”.
[5] Sindice© ‐ A semantic web index ‐ http://sindice.com/
[6] Ranks.NL stop‐words list ‐
http://www.ranks.nl/resources/stopwords.html

5

