
Keyword Extraction and Semantic Tag Prediction

 James Hong Michael Fang

 Stanford University Stanford University

 Stanford, CA - 94305 Stanford, CA - 94305

 jamesh93@stanford.edu mjfang@stanford.edu

Abstract

Content on the web is often organized through user generated tags for intuitive search and retrieval.

Such tags convey meta-information about the subject matter of the texts they represent. For this

project, we applied machine learning (Bayesian co-occurrence, k-NN, SVM, NNS) to predict tags

of StackExchange posts obtained from Kaggle: “Facebook Recruiting - Keyword Extraction III.”

Using our non-parametric, fuzzy Nearest Neighbor Search algorithm, we achieved a F1-score of

0.471 on a testing set with unseen data and 0.773 on the Kaggle test set (containing many duplicate

data points). Furthermore, when predicting a single tag per post, our algorithm attained

approximately 71.1% accuracy (on unseen data), surpassing the 0.65 accuracy attained by Stanley

& Byrne (2013). Our keyword-tag co-occurrence model and fuzzy NNS proved to be fast and

practical for large-scale subject and tag prediction problems with tens-of-thousands of tags and

training documents.

1. Introduction

Tagging is one of the simplest ways to organize web content. Allowing users to specify subjects, metadata

tags are vital for efficient search and indexing. Many contemporary social media sites support some system

of content tagging (Stanley & Byrne, 2013). An automated tagging system to model user generation of tags

would therefore be useful for purposes of tag suggestion, document and topic clustering, and tag validation.

2. Data Analysis and Preprocessing

From the Kaggle competition, we obtained a training set with 6,034,195 StackExchange posts, consisting

of the title, body, and tags, as well as a testing set consisting of 2,013,337 title and bodies of posts. These

posts cover a broad range of topics from 110 StackExchange sites (e.g. StackOverflow, MathOverflow,

AskUbuntu). Each post has up to 5 tags, and the number of tags is roughly modeled by a normal distribution

with a mean of 2.89 and standard deviation of 0.73. In accordance with Zipf’s law, tag frequency drops off

dramatically; the top 100 tags constitute 41.1% and the top 1,000 tags constitute 71.5% of all tags.

Through data analysis we observed a high degree of redundancy in the raw datasets. For instance, the raw

training set contained only 4,125,233 unique points. In addition, 1,048,575 points in the raw testing set are

duplicated from the training set. In conducting our experiment, we elected to train and test our algorithms

exclusively on non-duplicate data, since this would more closely resemble real-world conditions and studies

by other researchers (Stanley & Byrne, 2013). The data was preprocessed as follows (with an emphasis on

speed)1:

1. Create a custom lexicon using an English dictionary with stop words removed and terms extracted

from the tag set.2

2. Apply greedy multi-word matching to capture multi-word terms in the lexicon.

3. Filter out terms not in the lexicon (removing noise such as misspellings or arbitrary variable names

in embedded code segments).

1 We also tried stemming, but it proved ineffective for anything other than space reduction later in the co-occurrence

model as most keywords could not be stemmed. POS tagging proved to be too slow on large datasets. Our

preprocessing procedure also had the effect of reducing the training dataset from over 7 GB to under 1 GB.
2 An alternative method of generating a domain specific lexicon for StackOverflow posts would be to use computer

science textbook indexes as a corpus.

3. Evaluation Criteria

We measured performance in two ways: the Mean F1-score, and accuracy predicting a single tag (both on

non-duplicated test data, using hold-out cross validation for 10,000 labeled posts separated from the non-

duplicated training set). F1-score is formulated below, where 𝑝 is precision and 𝑟 is recall, 𝑡𝑝 is true positive

frequency, 𝑓𝑝 is false positive frequency, and 𝑓𝑛 is false negative frequency.

𝐹1 =
2𝑝𝑟

𝑝+𝑟
 , 𝑝 =

𝑡𝑝

𝑡𝑝+𝑓𝑝
, 𝑟 =

𝑡𝑝

𝑡𝑝+𝑓𝑛

4. Model Selection

We applied a variety of models to tag prediction. From our initial experiments with naïve Bayes and SVM

classifiers for individual tags (e.g. to predict whether c# is a tag), we concluded that such an approach is

intractable on large tag sets containing hundreds or thousands of tags. Instead we focused on algorithms

that considered thousands of tags using heuristics (co-occurrence) to reduce search space. To measure

learning rate, we trained each model on successively larger datasets.

4.1 (Greedy) “Tag in Text” Baseline

In our baseline algorithm, we compiled a list of common tags. For each test example, we simply predicted

whichever tags from the list were present in the text of the post. This returned an F1-score of 0.1654.

4.2 Nearest Neighbor Search for Top 500 Tags3

Compared to the greedy “tag in text” approach, Nearest Neighbor Search (NNS) on the top 500 tags

provided a more realistic baseline for a simple tagging system. The algorithm is as follows:

1. For each tag y in the top 500, concatenate all training examples with tag y. Generate a bag-of-words

(BOW) vector with frequency counts, and apply the TF-IDF transform with document frequency

computed using the entire training set. (These vectors correspond to “centroids” for each tag.)

2. For each test example, generate a BOW vector and apply the TF-IDF transform. Compute the

distance between the test example vector and every tag centroid vector using cosine similarity.

3. Rank the tags by similarity score to obtain predictions.

There are many flaws with this approach. First, the top 500 tags account for only 61.8% of all the tags in

all posts in the training set, imposing a strict upper bound on recall. Also, more efficient space partitioning

algorithms for NNS break down in high dimensional feature spaces, making NNS computationally

expensive (linear search). Consequently, we were unable to efficiently process any training set larger than

100,000 samples using NNS for 500 tags. However, as a baseline, we attained a F1-score of approximately

0.23 and an accuracy of 39.7% when predicting a single tag.

4.3 Tag-Keyword Co-occurrence Model

Using our training examples, we constructed a co-occurrence matrix to model the joint probability of word

and tag presence in a post. From this we can approximate upper bounds on the conditional probabilities for

each tag, given a set of words in a query. This allows us to quickly identify keywords that are strongly

correlated to individual tags.4

1. For each tag y, estimate max
𝑤𝑜𝑟𝑑∈𝑞𝑢𝑒𝑟𝑦

𝑃(𝑦|𝑤𝑜𝑟𝑑) using the co-occurrence matrix.

2. Return the top k tags.

3 In the project milestone write-up, this NNS approach was referred to as “Nearest Tag Distributions”.
4 To reduce space complexity, non-keyword entries in the matrix can be removed. This serves as an extra filter against

stop words.

While simple, this algorithm captures approximately 70% of the true tags within the first 10-20 tags

predicted. Thus, it serves as a potential intermediate filter for the k-NN and SVM “is tag?” binary classifiers.

4.3.1 SVM and k-NN Extensions to Co-occurrence Model

The co-occurrence model suffered from high bias when predicting less salient tags (those lacking specific

keywords). We attempted to remedy this bias by using additional text features based upon the word-tag

results from the co-occurrence matrix, and feeding them to SVM and k-NN classifiers. This retains the

advantage of working in lower dimensions (instead of working in the space of the lexicon).Then, we applied

forward search to determine the most relevant features on each algorithm, which were: the probability

bounds given in the above, tag presence in text, and the overall tag probability.

First, we used the k-Nearest Neighbors algorithm with large k (50) to obtain probability estimates based on

the proportion of positive neighbors. Next, we experimented on class-weighted and regularized SVM

classifiers with linear, polynomial, rbf, and sigmoid kernels, using the functional margin as a measure of

confidence for each candidate tag. For the SVM, the best performance was observed with an rbf kernel and

positive:negative weights of 7:1. Both SVM and k-NN improved performance on small training sets, where

the co-occurrence model was prone to over-fit. However, they were less effective on larger training sets.

4.4 (High Dimensional) Fuzzy Nearest Neighbor Search

The main issue that plagued our 500-tag NNS algorithm was the high dimensionality of the feature space.

To address the curse of high dimensionality, we implemented a fuzzy/approximate NNS algorithm for

efficient lookup and computation of semantic similarity across all of the 42,048 possible tags observed in

the training set. Using the keyword-tag co-occurrence model presented above, we narrowed the search

space of possible tags to 10-20 candidate tags, and applied linear NNS in this local search space. Our

algorithm:

1. For a test example, use the keyword-tag co-occurrence model to predict 10-20 candidate tags.

2. For each candidate tag, extract its corresponding row in the keyword-tag co-occurrence matrix as

a “tag centroid”. To increase the salience of the keywords (top non-zero entries) corresponding to

each tag, we zeroed out all but the largest 500 components and renormalized the centroids.

3. Compute cosine distance (similarity measure) between the test example (a normalized BOW

vector) and each candidate tag-centroid, and re-rank the tags by similarity.

4. Output the tags corresponding to the k-nearest tag centroids.

In subsequent experiments, we adjusted our fuzzy NNS similarity function to penalized candidate tags with

low semantic similarity, and reward tags with high similarity. Whereas the keyword-tag co-occurrence

model generally performed well on common and specific tags such as PHP, CSS, and C#, which correspond

strongly to specific keywords, fuzzy NNS improved performance on more general tags with high semantic

similarity (e.g. algorithms, parsing, image). Furthermore, fuzzy NNS improved precision when predicting

similar, hierarchical tags (e.g. facebook, facebook-api, and facebook-graph-api). Predicting three tags per

query, we achieved 0.481 recall and 0.461 precision on 10,000 unseen test examples when considering all

42,048 possible tags.5

5. Results

Table 1. Accuracy Predicting a Single Tag
Model \ # of training examples 100 1000 10k 100k 3000k

Keyword-tag co-occurrence 0.0230 0.1433 0.4042 0.5723 0.6315

co-occurrence & k-NN 0.1814 0.3104 0.5057 0.5971 0.6370

co-occurrence & SVM 0.0255 0.1571 0.4165 0.5595 0.6170

Fuzzy NNS 0.1250 0.2487 0.4662 0.6394 0.7105

5 When only considering the top 200 tags, fuzzy NNS achieves precision of 0.450, recall of 0.655, and F1 of 0.533.

Figure 1. On the single tag prediction benchmark, our high-dimensional fuzzy-NNS algorithm performed 7.9% better

than the keyword-tag co-occurrence model alone when trained on 3,000,000 training examples. On smaller training

sets, the k-NN classifier (on intermediate features) with keyword-tag co-occurrence improved test accuracy as the co-

occurrence model (even with smoothing) is highly prone to over-fitting on small training sets (<100,000).

Table 2. F1-Score Performance (Predicting 3 tags per query)
Model \ # of training examples 100 1000 10k 100k 3000k

Keyword-tag co-occurrence 0.0418 0.1123 0.2595 0.3648 0.4100

co-occurrence & k-NN 0.0987 0.1736 0.3129 0.3861 0.4149

co-occurrence & SVM 0.0463 0.1296 0.2818 0.3749 0.4123

Fuzzy NNS 0.0834 0.1564 0.2986 0.4156 0.4704

Figure 2. Similar to the single tag metric, the fuzzy-NNS algorithm attained significantly better F1 performance

(+0.0604) over our standalone co-occurrence algorithm and (+0.2364) top-500 tag NNS algorithm.

Results in Kaggle Competition: Using title string hashing to identify duplicates in the Kaggle test set and

then fuzzy NNS to tag the remaining non-duplicates, we achieved a F1-score of 0.773266 on the Kaggle

competition metric, and ranked 14 of 280 teams at the time of submission and 22/301 as of 12/12/2013.

6. Discussion

The main challenges of the StackExchange tag prediction problem include: (1) the large number of possible

tags, (2) the large number of word/multi-word features, (3) the size of the training/testing sets, (4) the

difficulty of measuring semantic similarity between domain-specific terms, and (5) high variability in user

tagging behavior.

6 For each test query, we returned exactly 3 tags, regardless of how many tags are in the solution. This is one area that

can be optimized for better performance on the F1-metric used by Kaggle.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

100 1000 10000 100000 1000000

A
cc

u
ra

cy

of training examples

Performance on Predicting a Single Tag

Word-Tag Co-occurrence

Co-occurrence & TF-IDF

Co-occurrence & k-NN

Co-occurrence & SVM

Co-occurrence & HD Fuzzy NNS

Co-occurrence & HD fuzzy NNS &
multiword features

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

100 1000 10000 100000 1000000

F1
-s

co
re

of training examples

Tagging Performance on F1-measure
Tag in text?

Nearest neighbors (500 tag baseline)

Word-Tag Co-occurrence

Co-occurrence & TF-IDF

Co-occurrence & k-NN

Co-occurrence & SVM

Co-occurrence & HD fuzzy NNS

Co-occurrence & HD fuzzy NNS &
multiword features

Our co-occurrence model addresses (1) and (2), allowing us to estimate the probability of a tag.

Furthermore, the co-occurrence matrix generated from our 3,000,000 point training set can be easily stored

to fit into main memory, allowing for high performance keyword extraction. To reduce the dimensionality

of our features and estimate semantic similarity between documents, we originally implemented a LSI

model. However, LSI does not scale well to large training sets with over 1 million data points. Instead, tag

centroids generated from the keyword-tag co-occurrence were more efficient to compute7 and allowed us

to process the entire Kaggle testing set in reasonable time and overcome the issues of high dimensionality

(3) with considerable improvement in precision and recall over the co-occurrence model without fuzzy

NNS (4). Finally, (5) users varied on the number and the specificity of tags. For this reason, accuracy

predicting only 1 tag and F1-score on all tags are both critical metrics of a tagger’s performance, the former

testing accuracy on overall subject prediction, and the latter on the viability of the algorithm as a tag

recommendation system. Using a regression model to predict the number of tags would probably improve

performance on F1 and Kaggle rankings. Finally, compared with the StackExchange prediction study by

Stanley and Byrne (2013), which used an ACT-R inspired co-occurrence to achieve 65% accuracy on the

single tag metric, fuzzy NNS achieved better accuracy (71%) with similar training set sizes. The difference

is most likely the product of re-ranking candidate tags by tag-centroid similarity.

Ultimately, our results demonstrate that a fuzzy NNS algorithm based on tag-keyword co-occurrence and

cosine distance can be an effective method for large scale tag and subject classification given enough

training data. This relates to similar problems such as hashtag prediction, tag recommendation, and search

and indexing. An additional application for tag prediction would be to filter spam/irrelevant tags and posts

(Stanley & Byrne, 2013).

7. Future Directions

Here are five possible areas of improvement. In order to further improve precision and recall of the tagging

fuzzy NNS algorithm, (i) a more sophisticated similarity function can be used to estimate semantic

similarity. For instance, Wikipedia pages or Google search results could be used to generate expanded text

representations for less common keywords (Sahami & Heilman, 2006). Additionally, syntactic parsing

strategies could improve data preprocessing. (ii) Unsupervised clustering can be applied training examples

with common tags, so as to model multiple tag-sub-centroids for more precise similarity comparison. (iii)

Applying locality sensitive hashing (MinHash) could allow for tractable NNS against not only tag-centroids

but the training examples themselves (Das, Datar, Garg, & Rajaram, 2007). (iv) For practical subject

identification systems, modeling tag specificity through tag-tag hierarchies can better balance the trade-off

between accuracy and specificity in tag prediction (Deng, Krause, Berg, & Li, 2012). Finally, (v) using

distributed computing would allow more sophisticated preprocessing steps, feature extraction, and semantic

similarity measures.

8. Bibliography

[1] Das, A., Datar, M., Garg, A., & Rajaram, S. (2007). Google News Personalization: Scalable Online. WWW 2007 (pp. 271-280).

Banff: ACM.

[2] Deng, J., Krause, J., Berg, A. C., & Li, F.-F. (2012). Hedging Your Bets: Optimizing Accuracy-Specificity Trade-offs in Large

Scale Visual Recognition. CVPR, (pp. 3450-3457). Providence.

[3] Kaggle. (2013). Facebook Recruiting III - Keyword Extraction. Retrieved from Kaggle: http://www.kaggle.com/c/facebook-

recruiting-iii-keyword-extraction

[4] Kuo, D. (2011). On Word Prediction Methods. Berkeley: UCB/EECS.

[5] Lott, B. (2012). Survey of Keyword Extraction Techniques.

[6] Manning, C. D., & Schutze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge: MIT Press.

[7] Sahami, M., & Heilman, T. D. (2006). A Web-based Kernel Function for Measuring the Similarity. WWW 2006 (pp. 377-386).

New York: ACM.

[8] Stanley, C., & Byrne, M. D. (2013). Predicting Tags for StackOverflow Posts. ICCM (pp. 414-419). Ottawa: ICCM.

7 Using fuzzy NNS, we were able to predict tags for the entire Kaggle test set (~2 million queries) on a 2012 MacBook

Air with a 1.8 GHz DC ULV processor and 8GB of RAM in the span of 5 hours.

