
Reinforcement learning for bicycle control

Bruce Cam, Chris Dembia, Johnny Israeli

December 13, 2013

1 Introduction

In 1998, Randlov and Alstrom showed that reinforcement
learning can be used to control a bicycle [7]. Since then,
their work has enjoyed minor popularity as a benchmark
problem [4, 3, 1, 6], in part because it is harder to solve
than the popular cart-pole problem. We implemented
Randlov’s original work using the PyBrain [9] machine
learning library. We were particularly interested in how
difficult it is for a human to balance the bicycle model us-
ing keyboard inputs; how much of a feat is the reinforce-
ment learning algorithm accomplishing? To this end, we
created a small game using the Panda3D library.

As Randlov and Alstrom did, we also attempted to
learn a controller that could drive to a goal destination.
To extend their work on shaping, we tried our own suite
of complex reward functions that would work well for
arbitrary goal destinations.

Our code is available online at https://github.com/
chrisdembia/agent-bicycle.

1.1 Background and previous work

Since the state of a bicycle is continuous, Randlov and Al-
strom needed a method to generalize the learner’s obser-
vations from specific states to new states the learner had
not seen. They chose to discretize the five-dimensional
state of their bicycle into 3456 bins; the learning that oc-
curs for any state in a given bin is used for all other states
within that bin (to evaluate the action value Q). This
generalization method is called linear function approxi-
mation with tile coding [12], though Randlov and Alstrom
use different words in their description. This rudimentary
method would require a significant tuning of the general-
ization scheme (number of bins, etc) if a different bicycle
model were used.

Lagoudakis, et al. used a linear function approxima-
tion with 20 basis functions that were nonlinear functions
of the state (e.g., θ̇2, ω2θ, etc.) [4]. Their method, Least
Squares Policy Iteration (LSPI), does not require the state
to be discretized, but still requires a discrete action space.
Lagoudakis and Parr have also used SVMs for the same
bicycle in order to store Q(s, a) [3]. Ernst, et al. use tree-
based supervised learning methods [1]. Ng and Jordan
learn a Markov Decision Process, which allows for a con-
tinuous action space (contrary to Randlov and Alstrom’s

work) [6]. Of course, many of the generalization meth-
ods (or reinforcement learning algorithms that come with
a form of generalization) have not been applied to the
bicycle problem. For example, neural fitted Q iteration
(NFQ) is designed to be less sensitive to any specific ex-
perience, because it is offline and Q(s, a) is stored using
a neural network with a hidden layer [8]. We thoroughly
explored both the LSPI and NFQ methods, but had lim-
ited success. In this report, we only discuss results from
using Randlov’s original method.

1.2 Controlling a bicycle

Why does it make sense to use reinforcement learning
to control a bicycle? We see three reasons. As is evi-
dent in [7], reinforcement learning allows the learning
of a control law that causes qualitatively different behav-
ior depending on the state: the agent can learn to focus
on riding towards a goal when the bicycle is upright, but
must focus on balancing when the bicycle starts to tilt
significantly. Secondly, reinforcement learning allows for
a control law that achieves a much more high-level goal
than that obtainable via typical optimal control methods.
While others have studied lane-change maneuvers with
conventional control methods [11], the task of driving to
a goal that is at a right angle from the bicycle’s heading
would be a challenge for such methods unless the entire
trajectory is specified That is, reinforcement learning can
be used for trajectory optimization.

The last reason relates the bicycle problem to other
problems typically approached with machine learning al-
gorithms. The bicycle is not so different from the cart
pole: in both cases we attempt to keep an unstable sys-
tem upright. However, the control in the cart pole prob-
lem more directly affects the angle of the pole: move the
cart so that it is under the pole. In the bicycle problem,
we have the same rough objective: move the bike in the
direction it is falling in order to ”catch” it. However, the
control to move the bike under itself is not so simple. In-
deed, to turn a bicycle to the left, one must first steer to
the right. This is called counter-steer. Indeed, this is rem-
iniscent of the mountain car problem, in which we have
the tricky result that the car must first go in the direction
opposite to its goal destination.

https://github.com/chrisdembia/agent-bicycle
https://github.com/chrisdembia/agent-bicycle

2 Randlov’s Model

Using Randlov and Alstrom’s bicycle model and envi-
ronment, we trained a learner using the SARSA(λ) al-
gorithm. We implemented Randlov’s balance and go-to
tasks with PyBrain, a machine learning library for Python
[9]. The episodic learning framework is illustrated in Fig-
ure 1. To evaluate the execution of the task during learn-
ing, we will additionally define a rehearsal sequence. In
one rehearsal sequence, the agent learns by executing 10
episodes, after which, the agent “performs” one episode
greedily without learning. We use the discounted sum
of rewards achieved over the performance episode as a
success metric.

We used Randlov’s reward function for both tasks. For
the balance task, a reward of -1 was given when the ab-
solute tilt angle exceeded 30 ◦ and 0 otherwise. For the
go-to task, the following reward was given.

if abs(ω) > π
12

r = −1

else

r = (4− ψ2) ∗ 0.0004

Figure 2 shows the results from Randlov’s balance
task. Our learner was able to balance indefinitely after
approximately 1500 trials. We observed cases in which
the agent would fall travel in stable, circular trajectories.
This was also observed by Randlov. Figure 3 shows the
resulting implementation of Randlov’s go-to task. The
agent lfirst learns to balance, and it first reaches the
goal after approximately 4500 trials. Both of the tasks
are very sensitive to learning rate annealing. Randlov
does not mention this, despite the fact that seems to be
well-known in the field [10]. Without annealing, nei-
ther task will result in a converging policy because the
current learning continually discards all the learning that
had already been done. The go-to task required a much
slower annealing rate than did the balance task because

the agent first needs to gain experience balancing before
attempting to navigate toward the goal.

Figure 2: (a) Learning curve for the balance task. (b) The tra-
jectories of the bicycle’s wheel contact points in each of several
thousand episodes. Simulation was stopped after 1000 seconds,
so trajectories may appear to terminate. The agent also found
several stable circular trajectories, as the one highlighted above.

Figure 3: (a) Learning curve for the ”go-to” task. (b) The tra-
jectories of the bicycle’s wheel contact points after several thou-
sand episodes. Here the goal was placed at a position (x =
10m, y = 50 m) relative to the bicycle starting location. After
about 4000 episodes (400 rehearsals), the bicycle reaches the
goal with increasing frequency.

Now, building on Randlov’s implementation, we ex-
plore our topics of interest–human ability to control a
virtual bicycle, and shaping of the reinforcement reward
function.

Figure 1: Learning methodology, in PyBrain’s terminology.

2

3 Game

Figure 4: We simulated our model using a Python game en-
gine, Panda3d [2]. Here, the user’s may attempt to balance the
bicycle by applying a torque to the handlebars or by shifting
the center of mass via keyboard inputs. Additionally, the game
engine was used to visualize the agent’s learning process. This
aspect was useful for demonstration and debugging.

To explore how humans control a bicycle, we created
an interactive simulation environment using Panda3d, a
game engine for Python. We simulated Randlov’s bicycle
model, and provided users control over the same actions
available to the reinforcement learning agent. In testing
the game, we quickly discovered the reflexive nature of
human control of a bicycle. Successful coordination of
body mass displacement and torque control was difficult
to accomplish. In fact, we struggled mightily to balance
the bike for more than a few seconds, far worse than what
our trained agent was able to achieve. This indicates that
the use of apprenticeship learning for this problem would
require that the observations come from humans riding
real bicycles; not from keyboard inputs.

During the poster session for this project, we consid-
ered allowing observers to try their own hand at balanc-
ing the bicycle. However, since we found it to be so chal-
lenging, we decided instead to allow observers to apply
a perturbation to the bicycle’s steering torque (using key-
board input). The learned controller was able able to
reject disturbances that were five times greater than the
steering torque it has available to itself for control!

In future studies, we would like to collect user input
data for a simple balance task and compare this to an
optimal reinforcement learning policy. Our preliminary
experiments suggest that the simulation may need to be
sufficiently slowed for usability. Further, we found great
utility in visualizing the learning process using our game
model. It helped illustrate behaviors that were being re-
warded, and it was a valuable debugging tool. Games
such as this can be used as educational or illustrative
tools.

4 Shaping

One of the key factors in any reinforcement learning ap-
plication is the reward function that is being maximized.
To optimize the learning, the reward function provide
positive reward for actions that help attain the goal and
negative reward for actions that hinder the bike from at-
taining its goal. This process of reward engineering is
called shaping. Here we describe a systematic shaping of
reward functions for a go-to task.

4.1 Balance Task

In order to shape an appropriate reward function for
balance, we first determine what behavior in the bike
model can help avoid a fall. If the bicycle’s tilt ω satis-
fies |ω| > π

6 , then we want to reward actions that reduce
tilt and punish actions which increase tilt. For tilt ω at
timestep t we define ω′ as the tilt at time t + 1 and a
balance reward function as follows:

Rb(ω, ω
′) =

{
A(|ω| − |ω′|), |ω| > |ω′|
B(|ω| − |ω′|), |ω| < |ω′| (1)

where A is defined as the reward factor and B is de-
fined as the punishment factor.

4.2 Go-to Task

In the case of a go-to-destination task, the agent must
both balance the bicycle and navigate to the goal. We
measure navigation performance through ψg, the error
in the heading at time t. As in balance, we define ψ′g,
the heading error at time t + 1 and a navigation reward
function as follows:

Rn(ψg, ψ
′
g) =

{
A(|ψg| −

∣∣ψ′g∣∣), |ψg| > ∣∣ψ′g∣∣
B(|ψg| −

∣∣ψ′g∣∣), |ψg| < ∣∣ψ′g∣∣ (2)

Finally, we combine Rb and Rn for a composite re-
ward function Rt = Rb + cRn, where c determines the
degree of emphasis on balance versus navigation, and A
and B have the same values as in Rb. We suppose that
there exists an optimal ratio between balance and navi-
gation that is characterized by c∗. Now, we expect c∗ to
scale inversely with the expected converged values of Rn,
implying the following behavior for c∗:

c∗ ∝ 1

Cum(Rn)
∼ 1

arctan
(
y
x

) (3)

where the target location is (x, y).

3

Figure 5: Path trajectories to a target centered at (20, 50) after
5500 episodes for c = 0.05 (left), c = 0.1 (center), and c = 0.2
(right). Both c = 0.05 and c = 0.2 reached the goal once but
c = 0.1 reached the goal twice. Thus, we expect c∗ to be near
c = 0.1.

To test this hypothesis we set A = 5000, B = 3000
and tried several c values for a target at (20, 50) and con-
cluded that c∗(20,50) is in the vicinity of c = 0.1 (Figure 5).
Next, we kept the same A, B, and c values for a target at
(40, 60) and we found that c = 0.05 is the best estimate of
c∗(40,50). This confirms the hypothesized behavior which
predicts that c∗(20,50) > c∗(40,50).

Figure 6: Path trajectories to a target centered at (40, 50) after
5500 episodes for c = 0.05 (left), c = 0.1 (center), and c = 0.2
(right). Both c = 0.1 and c = 0.2 reached the goal once. c = 0.1
reached the goal three times and thus a better estimate of c∗.

4.3 Future work

We have two major future goals in the area of shaping.
First, we plan to more thoroughly characterize the be-
havior of c∗ by repeating the trials presented here for
statistical confidence and testing more perturbations. In
particular, we plan to test a series of targets at with a
constant y

x and varying distance. Our second goal is to
develop a more sophisticated reward function. The cur-
rent reward system has produced functional controllers
for various targets. However, it linearly combined Rn
and Rb which implicitly treats them as orthogonal. But
we know that this is not true since ω and ψg are coupled
in our model. Thus, we plan to explore reward func-
tions which include cross terms between ω and ψg. By
developing more sophisticated reward systems and char-
acterizing the behavior of the coefficients in the reward
function we hope to develop a systematic method of de-
riving reward functions. This will eliminate most of the
fine-tuning that is usually required in controller design.

Randlov and Alstrom’s bicycle model is highly simpli-
fied, and does not capture all the interesting dynamics
of bicycle motion. For instance, their steer axis is verti-
cal. Realistic bicycles have a slanted steer axis that is de-
signed so that the point where the front wheel contacts
the ground in fact lies behind the point where the steer
axis intersects the ground. It had long been supposed
that this feature contributes to the stability of bicycles. In
fact, bicycles are self-stable (they won’t fall over if pushed
sideways) between about 4 and 6 m/s (forward speed).

Thus, it seems the utility of their problem is as a toy
problem for the comparison of reinforcement learning
methods, with limited applicability for actually control-
ling a bicycle. Significant work has been performed to
develop accurate models of bicycle dynamics [5].

References

[1] Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-Based Batch Mode Reinforcement Learning. 6:503–556,
2005.

[2] Mike Goslin and Mark R. Mine. The Panda3D graphics engine. Computer, 37(10):112–114, October 2004.

[3] Michail G Lagoudakis, Parr Cs, and Duke Edu. Reinforcement Learning as Classification : Leveraging Modern
Classifiers. 2003.

[4] Michail G Lagoudakis, Ronald Parr, and Michael L Littman. Least-Squares Methods in Reinforcement Learning
for Control. pages 249–260, 2002.

[5] Jason Keith Moore. Human Control of a Bicycle. PhD thesis, University of California, Davis, 2012.

[6] Andrew Y Ng and Michael Jordan. PEGASUS: A policy search method for large MDPs and POMDPs. In Uncer-
tainty in Artificial Intelligence, 2000.

[7] Jette Randlov and Preben Alstrom. Learning to drive a bicycle using reinforcement learning and shaping.
Proceedings of the Fifteenth International Conference on Machine Learning, 1998.

[8] Martin Riedmiller. Neural Fitted Q Iteration - First Experiences with a Data Efficient Neural Reinforcement
Learning Method. In 16th European Conference on Machine Learning, 2005.

4

[9] Tom Schaul, Justin Bayer, Daan Wierstra, Yi Sun, Martin Felder, Frank Sehnke, Thomas Rückstieß, and Jürgen
Schmidhuber. PyBrain. Journal of Machine Learning Research, 2010.

[10] Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. 2012.

[11] Robin S. Sharp. On the Stability and Control of the Bicycle. Applied Mechanics Reviews, 61(6):060803, 2008.

[12] Richard S Sutton and Andrew G. Barto. Reinforcement learning: an introduction. The MIT Press, Cambridge,
MA, 1998.

5

	Introduction
	Background and previous work
	Controlling a bicycle

	Randlov's Model
	Game
	Shaping
	Balance Task
	Go-to Task
	Future work

