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Problem Statement

High energy collisions of protons at the Large Hadron
Collider (LHC) produce massive particles such as W, Z,
Higgs bosons, and top quarks. A key task in the search
for physics beyond the standard model is to study the
kinematic configurations of these heavy particles. The
massive particles are observed indirectly by the energy
signature they generate. The heavy particles decay into
quarks and gluons which deposit energy on the ATLAS
calorimeter after hadronization. The collimated stream
of particles produced by the hadronization of a quark or
gluon is referred to as a jet. The goal of the project is
to discriminate between jets that originate from boosted
electroweak bosons such as W-boson and top quarks (re-
ferred to as W-jets) and those originating from light
quarks or gluons (referred to as QCD jets). The mo-
tivation to improve jet tagging (classification) is due to
the decrease in performance of standard techniques for
reconstructing the decays of heavy particles with a large
background of ordinary QCD jets. In this project com-
pares the performance of a number of supervised learn-
ing algorithms such as SVM, Fisher Linear Discriminant,
and random forest in their ability to distinguish between
W-boson and QCD jets.

Jet Image

The data we consider is a Monte Carlo simulation of a
top quark decay. The data is formatted as 25 by 25 pixel
2-D images where the pixel intensity corresponds to the
transverse momentum (pT) of the particle as detected by
the calorimeter. In unrotated image, the axes correspond
to eta and phi. However, pre-processing rotates each
image so that the clusters align vertically. As a result, the
axes no longer exactly correspond to rapidity-azimuth
plane (eta-phi), but to a spatial dimension unique to each
image.

The first of the following images depicts a W boson

Figure 1: Hadronic decay sequence

The diagrams on the left illustrate the typical decay se-
quence of either a W-boson or a QCD jet. a) W-boson
decay. b) QCD event. Note that the (a) W jet is typi-
cally composed of two distinct pT peaks, whereas the (b)
QCD jet deposits its energy over a wide region of the
calorimeter as a result of splitting observed in the event.
Image curtosy of source 1.
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decay into two quarks. W boson jets exhibit a two prong
structure where each prong corresponds to a quark gen-
erated in the decay. The second image is an example of
a QCD jet. QCD jets typically display an asymmetric
intensity pattern. QCD jets typically have a single high
pT peak and a variable number of lower pT peaks.
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The data analyzed in this paper relies upon prepro-
cessing algorithms written by Josh Cogan, graduate re-
searcher with the ATLAS group at SLAC.

Classification performance on raw
data

Support Vector Machine

To establish a baseline for classification accuracy, we
study the Support Vector Machine. Of the choices
of kernel, the gaussian kernel SVM with K(x, z) =
exp

(
−γ||x− z||2

)
performed the best. The optimize

the choice of parameters, C for l1 regularization and
the γ coefficient of the kernel, we perform hold out
cross validation. Hold-out cross validation on C ∈
{1, 10, 100, 1000, 10000} and γ ∈ {0.001, 0.01, 0.1, 1, 10}
resulted in parameters C = 100 and γ = 0.1 yielding the
lowest error when tested on the hold out cross validation
set. The learning curve for the Gaussian kernel SVM is
displayed below.

At best gaussian kernel SVM classified the jet image
data with 31.69% error.

The learning curves generated for the Gaussian kernel
SVM illustrate that the model possesses high bias. The
test and training error are both high and at compara-
ble levels. To improve the classification of the SVM, we
generate additional features.

The goal of the classification algorithm is to maximize
the ability to distinguish between the signal (W jets) and
background (QCD jets). To evaluate the performance
of a classification algorithm we introduce the measure
known as “Significance” S = TP/

√
FP where TP is the

true positive, the number of times the classifier correctly
classified the signal and FP is the false positive, the num-
ber of times the classifier classifies the background as
signal. We consider the

√
FP because

√
FP is the RMS

of the Poisson distribution with mean FP . A classifier
that achieves good discrimination between the signal and
background should maintain a high Significance value.
The significance value of the gaussian kernel SVM with
C = 100 and γ = 0.1 is S = 86.04

Figure 2: Learning Curve for Gaussian Kernel SVM
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Learning Curve for SVM w/ Guassian Kernel

Blue:
training data. Green: testing data. Training size of k
indicates that the linear SVM was trained on a data set
consisting of k W-jet samples and k QCD jet samples.
The total training set size is 2k.

Fisher Linear Discriminant

The classification of quark-initiated vs. gluon-initiated
jets parallels the gender recognition problem. The simi-
larity motivates the use of the Fisher Linear Discriminant
(FLD) facial recognition algorithm on the classification of
jets. The FLD objective is to perform dimensionality re-
duction by finding the direction by which the classes are
most separate. The algorithm generates a classifier with
a linear decision boundary by fitting the class conditional
densities to the fisher criteria of maximizing between
class scatter while minimizing the within-class scatter.
For jet classification we only consider the two class FLD
algorithm. In this case we have µ1 and µ2 the mean vec-
tors of the two classes. M1 and M2 are the total number
of samples, x(i)for either class. The within class scatter
matrix is given as Sw =

∑2
i=1

∑Mi

j=1(xj − µi)(xj − µi)
T

and between class scatter Sb =
∑2

i=1(µi − µ)(µi − µ)T

where µ = 1
2 (µ1+µ2). The goal is to find an orthonormal

projection matrix Wopt given by the optimization objec-
tive Wopt = argmax

W

|WTSbW |
|WTSwW | . When trained on the raw

jet pixel intensities, the FLD produced the following pro-
jection onto the one dimensional subspace. In this exam-
ple we train the FLD with a 10,000 sample training set.
The green curve corresponds to the quark-initiated jets.
Blue curve is QCD jets.
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Fisher 1D projection, m=10,000
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The Receiver Operating Characteristic (ROC) curve
which illustrates the performance of FLD as the discrim-
ination threshold is varied. When setting the decision
boundary corresponding to signal efficiency of 50%, FLD
algorithm performed with 35.3% error and S = 75.355 at
best. This is notably worse performance than the SVM
with gaussian kernel.

Random Forest

The third classification algorithm that performed well
when classifying the jets was random forests. The ran-
dom forest classifier builds a model by constructing
NTREES decision trees by repeatedly resampling the
training data with replacement. The random forest clas-
sifies the test data by returning the consensus vote of
NTREES. Every node of a decision tree corresponds to
one of the input features. The edges between a node and
its children give the possible values of that input feature.
Each leaf of the tree corresponds to the binary classifica-
tion of the total sample given the features represented by
the path from the root to the leaf. When constructing
the member trees of the random forest, each node shares
an edge with the best random subset of the features. Ini-
tial tests revealed the ExtraTreesClassifier implemented
in sklearn performs even better than the standard Ran-
domForestClassifier. The ExtraTreesClassifier adds in
an additional layer of randomness by choosing the best
threshold among a set of randomly generating thresh-
olds that are used to determine the best random subset
of features to connect to each node.
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Learning Curve for Random Forest w/ 100 trees

With NTREES = 100 the random forest classifier
performed with 30.5% test error and significance of S =
90.51. Random forest classifier performed better than
both the SVM and FLD algorithms.

Feature Expansion

In order address the bias of the model, we attempt to ex-
tract additional features from the data. Historically jet
tagging techniques attempt to classify a jet by analyzing
its substructure. This technique attempts to capitalize
on the fundamentally different energy patterns of W jets
and QCD jets. We employ a number of image processing
techniques with the goal of extracting meaningful fea-
tures from the jet images. For example, we would like to
quantify the number of subjets present in each jet image
where a subjet refers to a clusters of pixels with a pT
much larger than neighboring pixels and the relative pT
of the subjets.

Canny Edge Detection

Figure 3: Canny Edge Detection

Canny edge
detection identifies the two subjets of a W jet.

The first technique we apply to expand the set of image
features is canny edge detection. By applying edge detec-
tion to the images, we hope to more clearly distinguish
the subjets from the background. W jets should exhibit
edges around their two subjets where as QCD jets could
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Figure 4: Peak Local Maximum Filter

Image 1: W jet. The red points denote the coordinates of
the local peaks of the image. The maximum filter merges
regions within the rectangular region to identify the local
maximum.

Image 2: QCD jet.

display a variable number of edges. The edge detection
scheme assumes that there is an underlying continuous
intensity function which is sampled at the image points.
The edges are found by computing derivatives of this in-
tensity function. σ varies the width of the Gaussian used
to reduce the effect of noise present in the image. The
choice of σ = 1 yielded the a filtered image with the most
well defined edges. Training the Gaussian kernel SVM di-
rectly on the image filtered by the canny edge detector
or with the additional features appended onto features of
the original image did not improve in the classification of
jet images. In fact, the testing error rate for the Gaus-
sian kernel SVM (C = 100, γ = 0.1) when trained on
4000 samples increased from 31.78% to 35.75%. Since the
raw data contains very little background noise, the edges
distinguishing each subjet were already clear. Drawing
edges with the edge detector could reshape or rescale the
subjet edges inaccurately. Edge detection would generate
more meaningful features when considering jet images
that contain background pT due to energy deposited by
additional proton-proton collisions in the event.

Peak Local Maximum Filter

To ascertain information about the substructure of the
jet image, we employ scikit-image’s peak_local_max
function to find the coordinates of local peaks (maxima)
of the image. peak_local_max identifies the local max-
ima by first applying a maximum filter to identify the
pixels with large values. Potential maxima that are lo-
cated within a pre-selected radius are merged together.
The coordinates of the merged maxima is returned as the
coordinates of the local maxima of the original image.

We extract the following 5 features by using the coor-
dinates of the local maxima:

1. Whether the jet image contains two subjets.

Binary value: 1 if subjet contains two subjets (lo-
cal maxima), 0 if it contains a different number of
subjets.

2. pT of the largest local maxima.

3. pT of the second largest local maxima.

4. Difference in pixels between the two peaks with the
greatest pT values. The difference is given as ∆R =√

(x1 − x2)2 + (y1 − y2)2 where x and y are the axes
of the image. QCD jets are known to often have
1 high pT subjet and one lower pT subjet at wide
angle. Thus we might expect that the ∆R for QCD
jets is on average greater than the ∆R for W jets.

5. Ratio of the pT of the largest peak j1 and the second
largest peak j2, j1

j2
. This feature quantifies the rela-

tive size of the two subjets. This measure is useful
since the two subjets of a W jet should have similar
pT values. A QCD jet is more likely to have a single
high pT peak and a second smaller pT peak.

The gaussian kernel SVM, FLD, and Random Forest
algorithms all demonstrated a decrease in performance
when trained with only the 5 feature extracted above.
SVM performed with 38.2% testing error S = 69.23,
Fisher with 40.13% testing error S = 64.20, and random
forest with 38.8% testing error and S = 69.24. However,
appending the additional 5 features onto the original im-
age data yields marginal performance improvements for
SVM and FLD. SVM performed with 31.5% testing error
S = 86.7, Fisher with 35.2% testing error S = 78.35, and
random forest with 30.89% testing error and S = 89.64.
The results indicate that there is potential in extracting
additional features from the image data, however further
efforts are required for significant improvements in per-
formance.

Feature Selection
We suspect that the intrinsic dimensionality of the data
is much lower than 625 since all of the jet images from
either class look similar. This insight motivates the dis-
cussion of how to reduce the dimensionality of the train-
ing set to leave only those features that are critical to
the jet classification.

Principle Component Analysis (PCA)
The goal of PCA is to identify the subspace in which the
data approximately lies. By projecting the data on the
k principle components, this procedure can potentially
extract the most characteristic features from the data.
Performing hold-out cross validation on k, the number of
principle components, we find that optimal choice is k =
60. However, even with this choice of k, after applying

4



PCA on the expanded data set the testing error of the
gaussian kernel SVM is 38.53%, which is notably higher
than the error measured without PCA.

Recursive Feature Elimination

Beyond PCA, we attempt to reduce the dimensions of
the features by a number of techniques. Foremost, we
apply recursive feature elimination by using a linear ker-
nel SVM to assign weights to each feature. At each iter-
ation, this feature elimination procedure eliminates the
feature with the smallest weight from a trained SVM.
The procedure is recursively repeated on the pruned fea-
ture set until the desired number of features to select is
eventually reached. In addition to being computationally
expensive for a feature size of over 600, recursive feature
elimination does not achieve any noticeable improvement
in classification. When trained on the reduced data set
the SVM only manages to achieve 32.98% testing error
with S = 82.77 and FLD performs with 35.32% testing
error and S = 77.67. However, random forest observes
an infinitesimal improvement to achieve 30.76% testing
error with S = 90.61.

Tree-based Feature Selection

The random forest can also be used to determine the
most relevant subset of features by using the average in-
formation gain achieved during the construction of the
NTREES voting decision trees. The Sklearn package
is used to implement this procedure. When trained on
the extended training samples, the tree-based procedure
reduced the number of features to 187. This reduction in
features allowed the classifiers to run more quickly and
still demonstrate strong performance. In fact, the clas-
sifiers on performed better when trained on the reduced
data set. The SVM performed with 31.58% testing er-
ror and S = 86.62, FLD performed with 35.24% testing
error and S = 78.29, and random forest performed with
30.6% testing error and S = 91.49.

Conclusion

In this project the gaussian kernel SVM, Fisher Linear
Discriminant, and the random forest classifiers were com-
pared in their capabilities to discriminate between W and
QCD jets. Results indicate that feature expansion tech-
niques motivated by insight into the physical data can
improve classification. However, identifying the most sig-
nificant features still presents a problem. Feature selec-
tion techniques demonstrated a variety of results. Al-
though most feature selection procedures did not yield
significant improvement in classification, they still im-
prove the speed of the classifiers. Overall the random
forest and gaussian kernel SVM classifiers performed the
best.
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