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Abstract

In this project, we study the problem of classifying genes into biologically meaningful clusters by
applying machine learning techniques to gene expression data. Our data consists of gene expression
data from two types of mouse immunological cells (T-cells and Granulocytes) as well as data that
summarizes known biological pathways and genetic associations in mice. We utilize this data about
previously studied and understood genetic associations to improve the clustering classifications that
are made based on the gene expression data alone.

1 Introduction

The applications of gene expression data are numerous, as information about the expression of individual
genes can inform both academic understanding of genetic diseases as well as clinical treatments for
patients. One interesting use of gene expression data is to ”cluster” genes together in a biologically
meaningful way. That is, given gene expression data, we wish to group genes into clusters that correspond
to biological pathways in which the grouped genes code for proteins that work together at a functional
level.

This is a problem that has been studied, as in [1]. One may apply a k-means algorithm to a matrix
containing gene expression data to effectively cluster the genes. When attempting to cluster genes,
however, often times a lot of information is already known about genetic associations in biological
pathways. The ability to leverage this data to improve clustering predictions that would be made on the
gene expression data alone is the challenge that we address in this paper.

2 Methods

We studied gene expression data that was extracted from two different immunological cell types from 39
different mice. mRNA levels for 25,134 genes were measured using microarrays. This information was
stored in a 25,134×39 matrix D = (dij) where dij ∈ [0,15] is a measure of expression level (a higher value
means higher expression level). Further, we accumulated data that summarized 13,476 known biological
pathways. This data was stored in a 25,134 × 13,476 matrix P = (pij) defined thus:

pij = { n n ∈ N and n > 0, if gene i is associated with pathway j with strength n
0 else

We ran a k-means clustering algorithms on the matrix D for various values of k and used the elbow
method to decide on an optimal k.
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2.1 Finding the optimal k

We theorized that there exists a “correct” clustering of the genes considered, and therefore our chosen
k should be the same for both the original data and the data augmented with the data about priorly
determined pathways. Our approach was then to pick a value of k that worked well for both data sets
and compare the clusters produced by running k-means on each set and get an idea of the utility of
augmenting gene expression data with pathway priors.

We decided to pick an optimal k using the elbow method. The elbow method, which can be traced
to speculation by Thorndike (1953) in [2], describes a good choice of k for k-means. The method can
be described as follows: for fixed k ∈ Z+ let G denote the set of all training examples and Ck the
set of cardinality k of centroids determined by the k-means algorithm. Now for x ∈ G define µx =
arg minµ∈Sk

∣∣x−µ∣∣2 where ∣∣ ⋅ ∣∣ denotes the Euclidean norm on Rn. Then define the error of the k-means
algorithm to be

εk = ∑
x∈G

∣∣x − µx∣∣2

Now make a plot of εk as a function of k and note where there are “elbows” in the plot, i.e., points that
mark a sharp change in εk. An elbow point is a good choice of k. We also performed k-means on the
25,134 × 13,515 matrix M that is just D and P concatenated. Performing the elbow method on both
our results from running k-means on M and D, we picked an optimal k for clustering.

Figure 1: Example of elbow method

Then, we compared the results of k-means on M versus the results of k-means on D by comparing the
similarity between the clusters determined by both methods, using the following method:

2.2 Choosing the Optimal Weight

Our strategy for incorporating the prior data is to prepend the gene expressions data matrix D to the
genetic pathways matrix P multiplied by a scalar λ, which corresponds to how much we want to “weight”
the information about known pathways. We consider each genetic pathway as an addition feature to a
gene data point. The result is a matrix in Rm×n, where m = 25,134, n = a+b, a = 13,476 and b = 39. We
constructed a finite set S ⊆ R of potential candidates for λ, ran k-means on the concatenated matrices
with different choices of λ ∈ S and compared the results to find the optimal choice for λ.

To pick our initial value λ′ in S, we scaled P such that it has approximately equal weight relative to D.
This can be computed by normalizing D to be between 0 and 1, and scaling P as follows:
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λ′ = b

a(argmaxpP )

Then, we selected our set S of λs to test by picking an even number of values greater than and smaller
than λ′, such that each λ increments evenly and begins at zero.

Thus, our equation for λi for the set S = {λ1, λ2...λr} is

λi =
b(ri)

2a(argmaxpP )

Then, to test each selection of λ, we used the two-fold cross validation method. In a typical supervised
learning problem, cross-validation is used to test a trained model on classifying a subset of the original
data. We can make a normative judgement about the quality of our unsupervised learning model by using
distance as our metric of comparison, as opposed to label classification. The choice of λ that produces
the clusters that are most tightly clustered with randomly selected test data may be the optimal choice
of λ. We can conduct this analysis as follows:

1. Divide each matrix D and P into train and test (validate) matrices by randomly splitting up the
genes into two groups Dt, Dv, Pt, and Pv such that Dt and Pt have 70% the rows of D and P , and
Dv and Pv have the remaining 30%.

2. For each value λi ∈ S, compute the horizontal concatenation matrices Xit = [Dt λ(Pt)] and Xiv =
[Dv λ(Pv)].

3. Run the k-means clustering algorithm on Xit with the optimal selection of k from Section 2.1 to
produce the result vector Ci of centroid locations.

4. Then, evaluate the clustering model by testing on the remaining 30% validation data. For each
row xj in Xiv, assign a cluster by finding the closest cluster cj in C.

cj = argminc
k

∑
d=1

∣∣xj − cd∣∣

The error value εi is computed by summing the distances between each point xj and their corre-
sponding cluster centroid cj .

εi =
mv

∑
j=1

1

dj
xj − cj

where dj is the number of points assigned to cluster cj .

5. Pick the λi with the lowest classification error εi.

To smooth out inconsistencies and ensure that our conclusion was more generalizable, we decided to run
this algorithm multiple times and compare the averages of each εi for our analysis. This helps reduce
the effects of the random initial assignment of cluster positions when running the k-means algorithm,
and local extrema in the training data set Xv.

3 Data

Because it is incredibly computationally expensive to run the k-means algorithm on all of our data set
with thousands of features and training sets, we chose to run k-means only on the first 1,000 genes as a
proof of concept of our method.
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We ran the k-means algorithm first on the gene expression data D on varying values of k and plotted
the results of the error function J to determine the location of the elbow points that mark the optimal
choice of k. We made the assumption that the optimal choice of k would be something close to the value
k∗ =

√
n
2

, as suggested by Mardia et al. in [3]. Then, we chose values of k that deviated from k∗ by ±10.
Thus, our choices of k ranged from 10 to 30. This produced the graph shown in Figure 2a. We repeated
the same procedure with the gene expression data agumented with pathway priors M . The plot of our
k-means error values for each value of k on M can be seen in Figure 2b.

(a) Error of k-means run with varying k on expres-
sion data D.

(b) Error of k-means run with varying k on the
augmented data M .

Figure 2: The elbow method for determining an optimal k.

From this analysis, we determined that the optimal choice of k was aproximately 24 due to the fact that
in both Figures 2a and 2b, there was a sharp change in the slope of the plot of k-means error values
around the point where k = 24.

We then compared the results of k-means on M versus the results of k-means on D by comparing the
similarity between the clusters determined by both methods where for both k = 24 using the algorithm
described in Section 2.1. We determined that selecting k = 24 gave us a reasonable error.

We then ran our 2-fold cross validation algorithm to find the optimal choice of λ in the concatenation
of D and P . We first trained a cluster model on 70% of our original data set, and tested the resulting
clusters on the remaining 30% to produce an error value for each λi as described in Section 2.2.

After running our validation algorithm ten times, taking the average of each trial’s εi values, we were
able to identify the optimal ε∗ = ε5, as shown in Figure 3. Thus, we could select the optimal scalar

λ∗ = λ5 =
5(br)

2a(argmaxpP ) = 0.0012.
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Figure 3: Validation error of each λi, averaged over 10 trials

4 Further Research

The analysis we have done thus far has been limited due to the computational load of running our
algorithms on large data sets. Our next steps are to run our analysis on all 25,134 genes over more
varied choices of k to get a more accurate clustering and more optimal choice of k.

Once we have this choice of k, we would evaluate it with the following method:

1. Enumerate all possible bijective mappings between the clusters trained on the data and the clusters
trained on the data augmented with priors.

2. Sort these mappings by the number of points shared by each.

3. Go through and accept these mappings in sorted order. If a given mapping has a cluster already
accepted, reject that mapping and move on.

4. Find the total number of points shared by each mapping pair c found via this method. Subtract
this value from the total number of points k and divide by the total number of points: ε = k−c

k

Furthermore, we would like to extend our methodology to explore more strategies for incorporating
the prior data into our gene expression data for clustering analysis. Thus far, we have only tried
concatenating the pathways data to our gene expression data unweighted. We would like to explore
weighting the pathways data other strategies.
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