

 Matthew S. Vitelli Dominic R. Becker Thinsit (Laza) Upatising

 mvitelli@stanford.edu drbecker@stanford.edu lazau@stanford.edu

Abstract — The purpose of this project is to create a real-time

dynamic hand gesture recognition system from front-to-back.

Users interact with the system by wearing a special glove.

Motions from the user are interpreted by our application

running on standard computer hardware with a commodity

webcam. These motions are analyzed using computer vision

and machine learning, in particular Hidden Markov Models,

in order to determine which gesture is being made. Over time,

the user may train the system to adapt to and learn new

gestures.

I. PRIOR WORKS

 Hand gesture recognition has received a great deal of

attention in recent years. Due to its many potential

applications to mobile technology, gaming systems, and real-

time imaging technologies, it has become an area of increased

interest.

 Hand gesture recognition has been explored by many

researchers using a variety of methods. Visions of Minority

Report-like computer interaction are becoming somewhat

feasible. Mistry et al. present a wearable projector-and-camera

setup that recognizes hand gestures acting on the projected

images [9]. Google Glass promises similarly futuristic gesture-

augmented reality interaction.

 Other explorations include using the Microsoft Kinect,

which has a built in stereoscopic sensor. Ren et al. recognize

static hand gestures using a modified Earth Mover's Distance

metric [4]. Biswas and Basu recognize upper body gestures

using Kinect depth data and SVMs [5].

As early as 1994, Yang and Xu used Hidden Markov

Models (HMMs) to recognize gestures drawn with a mouse on

a computer [6]. In 1995, Starner and Pentland built an HMM-

driven system to recognize American Sign Language [7].

Keskin et al. created a 3D gesture recognition system that also

uses HMMs.

II. PURPOSE

Many proprietary computer vision systems that can detect

the location of a hand exist in the market today. These

technologies, such as Microsoft’s Kinect or Leap Motion’s

The Leap, can be used as an input device for a gesture

recognition system. However, these devices can be quite

costly. Our goal is to make a gesture recognition system that

can take data from any device and perform gesture

recognition. Currently, there is no standard data format for

gesture recognition devices, however, we hope that proprietary

computer vision systems will eventually adopt one – this

development will allow our system to perform gesture

recognition on any input device that supports the standard data

format.

 In this project we create a modular system in which a

custom-made input device recognizes the location of

fingertips, outputs the data into a standard text file and a

separate system reads the data in real time and performs

gesture recognition. Our system is highly modular so that

gesture recognition can be performed using any input device

that recognizes fingertips and output the data in a known

format.

III. METHOD: VISION

One major system in our project is the custom-built input

device which draws together technology from different fields

such as computer vision and basic circuitry.

A. The Glove

Users interact with our system using a custom-made glove.

The glove is fitted with 4 different LED bulbs, each with a

unique color. Since each brightly colored LED corresponds to

a unique finger, the process of recognizing fingertips is

simplified down to extracting brightly colored blobs from an

input image.

B. Computer Vision

The user’s fingertips must be correctly identified in order to

accurately track their gestures. To accomplish this, the image

captured by the webcam must be properly processed to

identify the position of the user’s fingertips, as well as

categorize each finger. The vision process can be broken down

into several stages as follows:

1. Threshold Pass – The image is thresholded to extract

the brightest pixels. The benefits of this process are

that most of the background is eliminated and most

the brightest pixels are likely candidates for the LEDs

of the glove.

2. Convolve Pass – The image is then convoluted using

a special kernel that favors brightly colored pixels

over white light. Since most of the LEDs appear

oversaturated in the camera image, this pass is useful

for approximating the true colors of the individual

LEDs.

3. Downsample Pass – The image is then downsampled

to a low resolution for later use during centroid

estimation.

A Novel System for Hand Gesture Recognition

mailto:mvitelli@stanford.edu
mailto:drbecker@stanford.edu
mailto:lazau@stanford.edu

4. Dilation Pass – The image is dilated to increase the

size of each region and provide better centroid

estimates.

5. Centroid Estimation – The centroids of each blob in

the image must be computed to accurately measure

the position of each fingertip. To perform this task,

we used a recursive flood-fill algorithm. Essentially,

the algorithm scans through each pixel in the image

and finds all pixels connected to the current pixel.

Because the algorithm needs to be performed at every

frame, we use a downsampled image to reduce the

number of computations necessary. Using this

approach, we can easily compute the centroids and

get accurate position measurements.

To increase the performance of our vision system, we

parallelized steps 1-5 to run entirely on the GPU using

programmable shaders. The system’s capture pipeline utilizes

DirectX to communicate with the GPU and perform data

processing.

IV. METHOD: LEARNING ALGORITHM

Based on the literature, it seemed that Hidden Markov

Models would appropriately model the four-fingered hand

gestures that we hoped to recognize. Given the input data: x-y

coordinates per finger over time, it made sense for our feature

extraction to follow a similar pipeline to that in Yang and Xu

[6]. As such, the feature data is quantized using a clustering

algorithm before it is fed into the HMM.

A. Feature Selection

We experimented with a variety of different feature models

and representations of the feature space. Our first approach

incorporated velocity data from each fingertip; however this

proved to be cumbersome, as we wanted our gestures to be

invariant to time.

 In an attempt to overcome this, we normalize each finger's

velocity vector in order to compute the raw direction.

However, informally, this does not seem to improve

recognition of gestures that are made more quickly. The

reason for this seems to be the sample rate of the data: if the

gesture is made too quickly, only a few frames are captured by

the camera—and these may not include important frames in

the middle of the gesture, which make the gesture less

recognizable.

 B. Quantizing Feature Data

Before feeding the features into the Hidden Markov Model,

each frame's feature data—the normalized x and y velocities

for each finger—is quantized using a codebook generated by a

clustering algorithm. This is primarily done to group similar

features across frames together (thus reducing the size of the

dataset), as well as to discretize the feature-space for later use

in the Hidden Markov Models.

In particular, we implemented the LBG algorithm, due to

Linde, Buzo, and Gray, to perform the clustering. Yang and

Xu employ this clustering algorithm to 99.78% accuracy with

100 samples of training data for mouse gesture recognition

[6].

Using the codebook, each input feature per-frame is

classified into a given cluster, and the observation sequence is

transformed to a sequence of the clusters corresponding to the

nearest centroid in the generated codebook to each frame's

feature vector. Again, in order to recognize a gesture, the

frame features are quantized using this LBG-generated

codebook.

The Input Frame

Threshold Pass

Convolve Pass

Downsample

Dilation

Clustering

C. Hidden Markov Models

Hidden Markov Models are used to predict which gesture

the user is currently performing. One model is generated for

each gesture. The HMMs are trained by taking a collection of

the codebook-discretized sequences, used as the actions of the

Hidden Markov Model, corresponding to each raw training

sample. The HMMs are trained using the Baum-Welch re-

estimation algorithm either until convergence or to a

maximum of 500 iterations (for the sake of timely model

generation). This training is done offline as it cannot be

completed in an acceptable amount of time for an end user to

interact with directly (i.e. on the order of hours).

Once the models are built, on the other hand, recognition is

performed in real-time. During recognition, the user’s current

input gesture is first quantized using the process described

above. Next, the Viterbi algorithm computes the likelihood of

the quantized observation sequence given each model.

Selecting the model that maximizes the likelihood, our

application is able to guess which gesture the user is

performing.

V. RESULTS AND ANALYSIS

We tested our system under a number of different

parameters, including various numbers of clusters and Markov

transitions. We also performed diagnostic tests with

normalized and unnormalized feature data. Due to the fact that

computing Hidden Markov Models is a time-consuming

process, we were only able to capture a limited number of

varying transition states and cluster sizes. Ultimately, we

settled on 16 unique clusters with 4 Markov transition states.

We tested our results using hold-out cross validation,

training on 70% of the data. The data consists of eight

gestures, each with around 200 training samples. For the final

presentation, we retrained the Hidden Markov Models with all

of the available training data, and did not notice any

significant drop in accuracy.

A. Number of Clusters

Figure 1 shows the average accuracy over eight gestures of a

four state Hidden Markov Model trained over a varying

number of clusters. It is apparent from the image that

increasing the number of states can actually detract from the

Hidden Markov Model’s performance. Figure 2 shows the

normalized and unnormalized 256 clusters generated by our

algorithm on only four simple gestures: horizontal and vertical

gestures (see appendix). The figure shows that having too

many clusters will cause the algorithm to begin differentiating

between motions that are extremely similar, which is

undesirable. Figure 3 is 16 clusters generated by all eight

gestures, we can see that lowering the number of clusters will

allow the algorithm to recognize principle motion directions

without causing similar gestures to be classified as different

clusters.

Figure 1

Figure 2

Figure 3

B. Number of Hidden Markov Model States

We can see from the Figure 4 that the optimal number of

states in the Hidden Markov Model is 4. We thought that

increasing the number of states in the Hidden Markov Model

would allow the model to capture more states that represent

the user’s gesture. However, empirical data shows otherwise.

We postulate that this may be due to the limited number of

training samples that we obtained – a closer analysis of the

emission matrices for Hidden Markov Models with more than

8 states shows that many of the emission probabilities were

too low.

VI. FUTURE WORK

A. Live Recognition

 Having to click a start-stop button to recognize an

individual gesture is inconvenient. In particular, using gesture

recognition as an input method would be infeasible if the user

needed to indicate the beginning and end of each gesture.

Instead, it would be ideal for the system to automatically

determine when a gesture has been made. One way to do this

would be to identify gestures by applying some threshold to

the likelihoods generated by the Viterbi algorithm. While the

basic idea would be to run the Viterbi computations at some

per-frame interval, issues may arise such as what data to

include (last 20 frames, last 2 seconds, etc.).

B. More Flexible Input Data

Our current training and recognition system accounts for

exactly four fingers. If a finger is hidden during data capture

(or another is added), the data captured becomes very erratic.

It would be ideal to simply remove such data before feeding it

into the model. However, with such different data sets, there

would have to be more data, perhaps encapsulated in different

Markov Models, with/without those corresponding features. A

system that handled fewer or more fingers could be much

more flexible in terms of practical usability.

C. Improved Feature Selection

Certain gestures are harder to recognize than others. With

only finger velocities as features, gestures like circles are

difficult to recognize. In many of the gestures that were

successfully recognized, the finger positions relative to one

another were constant. For other gestures though, say a snap

of the fingers, additional features like relative position may be

more valuable. Another feature manipulation to explore is

normalization: better normalization may lead to improved

recognition regardless of temporal length of the gesture.

VII. CONCLUSION

We successfully prototyped a front to end gesture

recognition system using Hidden Markov Models and a

custom built input device. The system is highly accurate for

the majority of the gestures in our database. While we

successfully prototyped a flexible system for hand gestures,

this project just scratches the surface of what is possible.

Given more time, we would like to increase the complexity of

our gestures, as well as the number of gestures used in our

system. Additionally, we would like to parallelize more of our

codebase to accelerate the process of training the clusters and

Hidden Markov Models.

VIII. ACKNOWLEDGEMENT

We gratefully acknowledge Professor Andrew Ng for

valuable feedback on our project and the excellent lecture

notes on Hidden Markov Models.

IX. REFERENCES

[1] Pavlovic,V.: Dynamic Bayesian Networks for Information Fusion with

Applications to Human–Computer Interfaces, Dept. of ECE, University

of Illinois at Urbana-Champaign, Ph.D. Dissertation, (1999)

[2] Stenger, B.: Model-Based Hand Tracking Using a HieraDynamic Time

Warping

[3] Blob Recognitionrchical Bayesian Filter (2006).

[4] Ren, Zhou, Junsong Yuan, and Zhengyou Zhang. "Robust hand gesture

recognition based on finger-earth mover's distance with a commodity

depth camera." Proceedings of the 19th ACM international conference

on Multimedia. ACM, 2011.

[5] Biswas, K. K., and Saurav Kumar Basu. "Gesture Recognition using

Microsoft Kinect®." Automation, Robotics and Applications (ICARA),

2011 5th International Conference on. IEEE, 2011.

[6] Yang, Jie, and Yangsheng Xu. Hidden markov model for gesture

recognition. No. CMU-RI-TR-94-10. CARNEGIE-MELLON UNIV

PITTSBURGH PA ROBOTICS INST, 1994.

[7] Starner, Thad, and Alex Pentland. "Real-time american sign language

recognition from video using hidden markov models." Computer Vision,

1995. Proceedings., International Symposium on. IEEE, 1995.

[8] Keskin, C., A. Erkan, and L. Akarun. "Real time hand tracking and 3d

gesture recognition for interactive interfaces using hmm."

ICANN/ICONIPP 2003 (2003): 26-29.

Figure 1

Figure 4

[9] Mistry, Pranav, Pattie Maes, and Liyan Chang. "WUW-wear Ur world: a

wearable gestural interface." Proceedings of the 27th international

conference extended abstracts on Human factors in computing systems.

ACM, 2009.

X. APPENDIX

Here are the eight recognized gestures:

Thumbs Up

Thumbs Down

Swipe Right

Swipe Left

Swipe Up

Swipe Down

Pinch In

Pinch Out

