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Abstract — The purpose of this project is to create a real-time 

dynamic hand gesture recognition system from front-to-back. 

Users interact with the system by wearing a special glove. 

Motions from the user are interpreted by our application 

running on standard computer hardware with a commodity 

webcam. These motions are analyzed using computer vision 

and machine learning, in particular Hidden Markov Models, 

in order to determine which gesture is being made. Over time, 

the user may train the system to adapt to and learn new 

gestures. 

 

I. PRIOR WORKS 

 Hand gesture recognition has received a great deal of 

attention in recent years. Due to its many potential 

applications to mobile technology, gaming systems, and real-

time imaging technologies, it has become an area of increased 

interest.  

 Hand gesture recognition has been explored by many 

researchers using a variety of methods. Visions of Minority 

Report-like computer interaction are becoming somewhat 

feasible. Mistry et al. present a wearable projector-and-camera 

setup that recognizes hand gestures acting on the projected 

images [9]. Google Glass promises similarly futuristic gesture-

augmented reality interaction.  

 Other explorations include using the Microsoft Kinect, 

which has a built in stereoscopic sensor. Ren et al. recognize 

static hand gestures using a modified Earth Mover's Distance 

metric [4]. Biswas and Basu recognize upper body gestures 

using Kinect depth data and SVMs [5].  

As early as 1994, Yang and Xu used Hidden Markov 

Models (HMMs) to recognize gestures drawn with a mouse on 

a computer [6]. In 1995, Starner and Pentland built an HMM-

driven system to recognize American Sign Language [7]. 

Keskin et al. created a 3D gesture recognition system that also 

uses HMMs.  

II. PURPOSE 

Many proprietary computer vision systems that can detect 

the location of a hand exist in the market today. These 

technologies, such as Microsoft’s Kinect or Leap Motion’s 

The Leap, can be used as an input device for a gesture 

recognition system. However, these devices can be quite 

costly. Our goal is to make a gesture recognition system that 

can take data from any device and perform gesture 

recognition. Currently, there is no standard data format for 

gesture recognition devices, however, we hope that proprietary 

computer vision systems will eventually adopt one – this 

development will allow our system to perform gesture 

recognition on any input device that supports the standard data 

format. 

 In this project we create a modular system in which a 

custom-made input device recognizes the location of 

fingertips, outputs the data into a standard text file and a 

separate system reads the data in real time and performs 

gesture recognition. Our system is highly modular so that 

gesture recognition can be performed using any input device 

that recognizes fingertips and output the data in a known 

format. 

III. METHOD: VISION 

One major system in our project is the custom-built input 

device which draws together technology from different fields 

such as computer vision and basic circuitry. 

A. The Glove 

Users interact with our system using a custom-made glove. 

The glove is fitted with 4 different LED bulbs, each with a 

unique color. Since each brightly colored LED corresponds to 

a unique finger, the process of recognizing fingertips is 

simplified down to extracting brightly colored blobs from an 

input image.  

B. Computer Vision 

The user’s fingertips must be correctly identified in order to 

accurately track their gestures. To accomplish this, the image 

captured by the webcam must be properly processed to 

identify the position of the user’s fingertips, as well as 

categorize each finger. The vision process can be broken down 

into several stages as follows: 

 

1. Threshold Pass – The image is thresholded to extract 

the brightest pixels. The benefits of this process are 

that most of the background is eliminated and most 

the brightest pixels are likely candidates for the LEDs 

of the glove. 

2. Convolve Pass – The image is then convoluted using 

a special kernel that favors brightly colored pixels 

over white light. Since most of the LEDs appear 

oversaturated in the camera image, this pass is useful 

for approximating the true colors of the individual 

LEDs. 

3. Downsample Pass – The image is then downsampled 

to a low resolution for later use during centroid 

estimation. 
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4. Dilation Pass – The image is dilated to increase the 

size of each region and provide better centroid 

estimates. 

5. Centroid Estimation – The centroids of each blob in 

the image must be computed to accurately measure 

the position of each fingertip. To perform this task, 

we used a recursive flood-fill algorithm. Essentially, 

the algorithm scans through each pixel in the image 

and finds all pixels connected to the current pixel. 

Because the algorithm needs to be performed at every 

frame, we use a downsampled image to reduce the 

number of computations necessary. Using this 

approach, we can easily compute the centroids and 

get accurate position measurements.  

To increase the performance of our vision system, we 

parallelized steps 1-5 to run entirely on the GPU using 

programmable shaders. The system’s capture pipeline utilizes 

DirectX to communicate with the GPU and perform data 

processing. 

 

 
 

IV. METHOD: LEARNING ALGORITHM 

Based on the literature, it seemed that Hidden Markov 

Models would appropriately model the four-fingered hand 

gestures that we hoped to recognize. Given the input data: x-y 

coordinates per finger over time, it made sense for our feature 

extraction to follow a similar pipeline to that in Yang and Xu 

[6]. As such, the feature data is quantized using a clustering 

algorithm before it is fed into the HMM.  

A. Feature Selection 

We experimented with a variety of different feature models 

and representations of the feature space. Our first approach 

incorporated velocity data from each fingertip; however this 

proved to be cumbersome, as we wanted our gestures to be 

invariant to time.  

 In an attempt to overcome this, we normalize each finger's 

velocity vector in order to compute the raw direction. 

However, informally, this does not seem to improve 

recognition of gestures that are made more quickly. The 

reason for this seems to be the sample rate of the data: if the 

gesture is made too quickly, only a few frames are captured by 

the camera—and these may not include important frames in 

the middle of the gesture, which make the gesture less 

recognizable.  

 

 B. Quantizing Feature Data 

Before feeding the features into the Hidden Markov Model, 

each frame's feature data—the normalized x and y velocities 

for each finger—is quantized using a codebook generated by a 

clustering algorithm. This is primarily done to group similar 

features across frames together (thus reducing the size of the 

dataset), as well as to discretize the feature-space for later use 

in the Hidden Markov Models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In particular, we implemented the LBG algorithm, due to 

Linde, Buzo, and Gray, to perform the clustering. Yang and 

Xu employ this clustering algorithm to 99.78% accuracy with 

100 samples of training data for mouse gesture recognition 

[6].  

Using the codebook, each input feature per-frame is 

classified into a given cluster, and the observation sequence is 

transformed to a sequence of the clusters corresponding to the 

nearest centroid in the generated codebook to each frame's 

feature vector. Again, in order to recognize a gesture, the 

frame features are quantized using this LBG-generated 

codebook.  
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C. Hidden Markov Models 

Hidden Markov Models are used to predict which gesture 

the user is currently performing. One model is generated for 

each gesture. The HMMs are trained by taking a collection of 

the codebook-discretized sequences, used as the actions of the 

Hidden Markov Model, corresponding to each raw training 

sample. The HMMs are trained using the Baum-Welch re-

estimation algorithm either until convergence or to a 

maximum of 500 iterations (for the sake of timely model 

generation). This training is done offline as it cannot be 

completed in an acceptable amount of time for an end user to 

interact with directly (i.e. on the order of hours).  

Once the models are built, on the other hand, recognition is 

performed in real-time. During recognition, the user’s current 

input gesture is first quantized using the process described 

above. Next, the Viterbi algorithm computes the likelihood of 

the quantized observation sequence given each model. 

Selecting the model that maximizes the likelihood, our 

application is able to guess which gesture the user is 

performing. 

 

V. RESULTS AND ANALYSIS 

We tested our system under a number of different 

parameters, including various numbers of clusters and Markov 

transitions. We also performed diagnostic tests with 

normalized and unnormalized feature data. Due to the fact that 

computing Hidden Markov Models is a time-consuming 

process, we were only able to capture a limited number of 

varying transition states and cluster sizes. Ultimately, we 

settled on 16 unique clusters with 4 Markov transition states. 

We tested our results using hold-out cross validation, 

training on 70% of the data. The data consists of eight 

gestures, each with around 200 training samples. For the final 

presentation, we retrained the Hidden Markov Models with all 

of the available training data, and did not notice any 

significant drop in accuracy. 

 

 

 

A. Number of Clusters 

Figure 1 shows the average accuracy over eight gestures of a 

four state Hidden Markov Model trained over a varying 

number of clusters. It is apparent from the image that 

increasing the number of states can actually detract from the 

Hidden Markov Model’s performance. Figure 2 shows the 

normalized and unnormalized 256 clusters generated by our 

algorithm on only four simple gestures: horizontal and vertical 

gestures (see appendix). The figure shows that having too 

many clusters will cause the algorithm to begin differentiating 

between motions that are extremely similar, which is 

undesirable. Figure 3 is 16 clusters generated by all eight 

gestures, we can see that lowering the number of clusters will 

allow the algorithm to recognize principle motion directions 

without causing similar gestures to be classified as different 

clusters.  
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B.  Number of Hidden Markov Model States 

We can see from the Figure 4 that the optimal number of 

states in the Hidden Markov Model is 4. We thought that 

increasing the number of states in the Hidden Markov Model 

would allow the model to capture more states that represent 

the user’s gesture. However, empirical data shows otherwise. 

We postulate that this may be due to the limited number of 

training samples that we obtained – a closer analysis of the 

emission matrices for Hidden Markov Models with more than 

8 states shows that many of the emission probabilities were 

too low. 

VI. FUTURE WORK 

A. Live Recognition 

 Having to click a start-stop button to recognize an 

individual gesture is inconvenient. In particular, using gesture 

recognition as an input method would be infeasible if the user 

needed to indicate the beginning and end of each gesture. 

Instead, it would be ideal for the system to automatically 

determine when a gesture has been made. One way to do this 

would be to identify gestures by applying some threshold to 

the likelihoods generated by the Viterbi algorithm. While the 

basic idea would be to run the Viterbi computations at some 

per-frame interval, issues may arise such as what data to 

include (last 20 frames, last 2 seconds, etc.).  

  

B. More Flexible Input Data 

Our current training and recognition system accounts for 

exactly four fingers. If a finger is hidden during data capture 

(or another is added), the data captured becomes very erratic. 

It would be ideal to simply remove such data before feeding it 

into the model. However, with such different data sets, there 

would have to be more data, perhaps encapsulated in different 

Markov Models, with/without those corresponding features. A 

system that handled fewer or more fingers could be much 

more flexible in terms of practical usability.  

 

C. Improved Feature Selection 

Certain gestures are harder to recognize than others. With 

only finger velocities as features, gestures like circles are 

difficult to recognize. In many of the gestures that were 

successfully recognized, the finger positions relative to one 

another were constant. For other gestures though, say a snap 

of the fingers, additional features like relative position may be 

more valuable. Another feature manipulation to explore is 

normalization: better normalization may lead to improved 

recognition regardless of temporal length of the gesture.  

VII. CONCLUSION 

We successfully prototyped a front to end gesture 

recognition system using Hidden Markov Models and a 

custom built input device. The system is highly accurate for 

the majority of the gestures in our database. While we 

successfully prototyped a flexible system for hand gestures, 

this project just scratches the surface of what is possible. 

Given more time, we would like to increase the complexity of 

our gestures, as well as the number of gestures used in our 

system. Additionally, we would like to parallelize more of our 

codebase to accelerate the process of training the clusters and 

Hidden Markov Models.  
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X. APPENDIX 

Here are the eight recognized gestures: 

 
Thumbs Up 

 
Thumbs Down 

 
Swipe Right 

 
Swipe Left 

 
Swipe Up 

 
Swipe Down 

 
Pinch In 

 
Pinch Out 


