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Abstract 
Major Histocompatibility Complex (MHC) 
plays a key role in immune response by 
presenting antigenic peptides, which are 
recognizable to T-cells. Identifying MHC-
binding peptides is crucial to understand 
pathogenesis and develop corresponding 
vaccines. Direct identification of MHC-binding 
peptides by biological assays is laborious and 
expensive, because of the huge size (209) of 
potential combinations. Current computational 
methods are also not satisfactory: many of 
them failed to capture the features of non-
conserved motifs, MHC molecule 
polymorphism, and non-specific binding to 
low-affinity peptides. Large datasets from 
National Institute of Health (NIH) public data 
repository and our own research data, with 
machine learning methods, provide a great 
opportunity for addressing this problem. Thus, 
we aim to develop an efficient and accurate 
method to identify and predict MHC-binding 
peptides and to further differentiate various 
MHC subtypes by their peptide-binding 
specificities. By selecting ~3000 peptide motifs 
as features, we built classifiers with Naive 
Bayes and SVM-based approaches. These 
classifiers achieved accuracy up to 99% on 
four most frequent human MHC subtypes—
HLA-A01, HLA-A02, HLA-B27, and HLA-
B08—with 10 fold cross-validation. We 
applied these classifiers onto experimental 
data—a pool of potential binders. It has been 
found that up to 98% peptides are classified as 
binders and the classifier can be used to 
determine the specific subtypes. We also 
applied another approach, iterative statistical 
search in feature optimization. This iterative 
approach showed very promising results in our 

preliminary test. By applying this approach in 
feature generation, we achieved about 85% 
accuracy with less than 30 features.  Further 
exploration of this approach will optimize 
feature space and improve algorithm 
efficiency.  
 
Introduction 
    The immune system acts as a physical 
barrier against pathogen infections by 
activating B cells and T cells. B cells and T 
cells are special types of white blood cells that 
can recognize “nonself” cells, including 
pathogen-infected cells, and trigger immune 
response. In particular, cytotoxic T cell 
receptors can bind to major histocompatibility 
complex (MHC) that are antigen-specific 
receptors on the “nonself” cells and alert 
immune system to kill these infected cells 
(Smith-Garvin et al., 2009). Among three 
classes (I, II, and III) of MHC family, class I is 
by far the most well characterized subgroup, 
which we focused on in this study. Class I 
MHC proteins have a special structure with 
four antiparallel ! -strands in the center region 
and two " -helices on one side. The two " -
helices form a groove that contains six amino-
acid binding pockets and can only 
accommodate short peptides of 8 to 11 amino 
acids—short fragments of antigens, in other 
words epitopes(Figure 1; Mester et al., 2011). 
Identifying and predicting MHC-binding 
epitopes are essential to understand the cause 
of diseases and develop corresponding 
vaccines (Lundegaard et al., 2007). 
    Due to the size of the potential binding 
peptides (209 = 512 billion) for each MHC 
molecule (Liao and Arthur, 2011), empirical 
approach by biology experiments is laborious 



	
  

and expensive to identify binding peptides. 
Multiple computational approaches including 
artificial neutral network (ANN) based method 
were developed to predict binding peptides 
(Lundegaard, 2008). But many of them failed 
to capture and quantify the complex MHC-
binding properties due to few conserved 
peptide motifs, polymorphism in MHC 
molecules, and binding ability to low-affinity 
peptides (Nielsen et al., 2004; Peters et al., 
2005). To overcome these challenges and 
better predict the epitopes from binding 
peptides of different MHC molecules, we 
studied the characteristics of the peptides and 
MHC protein sequences near the peptide-
binding region. We extracted more than 12,000 
peptides that bind to four most frequent MHC 
subtypes—HLA-A01, HLA-A02, HLA-B27, 
and HLA-B08 from Immune Epitope Database 
2.0 and resource analysis (IEDB). We then 
selected and optimized features to built 
classifiers. Using machine-learning algorithms, 
we are able to predict binding peptides from a 
lab-generated dataset. 
 

 
Figure 1 Structure and binding groove of major 
histocompatibility complex (MHC) molecules 
(Adapted from website of Institute of 
Structural and Molecular Biology at University 
of London) 
 
Data collection 
    Binding-peptides were collected from 
Immune Epitope Database 2.0 and resource 
analysis (IEDB), and newly generated data 
from our lab at systems biology department by 
high-resolution mass spectrometry. From IEDB 
database, we extracted four datasets of MHC-

binding peptides to four MHC subtypes—
HLA-A1, HLA-A2, HLA-B27, and HLA-
B08—each dataset containing about 3000 
binding and 3000 nonbinding peptides. For lab-
generated MHC-binding peptides, we purified 
cell lysate proteins of B cells that associate 
with MHC proteins and sequenced the short 
MHC-binding peptides with orbitrap mass 
spectrometry. We focused on 9-mer peptides, 
because it is the dominant form that binds to 
MHC class I alleles. Our lab data include 786 
distinct peptides, which are a pool of potential 
binding peptides to all four MHC subtypes. 
    To generate MHC-non-binding peptides, we 
applied Markov Model based on Uniprot 
protein database (Elias, 2012). The probability 
that these peptides actually bind MHC is really 
low and can be ignored.  
 
Feature Selection 
    Motifs—short conserved sequence patterns 
of amino acids or nucleotides—are usually 
associated with key functional sites involved in 
catalysis and/or binding to other molecules. 
Considering that MHC molecules have 
preference to some amino acids at certain 
positions, we selected motifs as features to 
build the classifier for epitope binding 
prediction. We define a motif in our analysis as 
a 9-amino acid over an alphabet of 20 amino 
acids {ACDEFGHIJKLMNPQRSTVY} and ’.’ 
denoting any of the 20 possible amino acids. A 
sequence s = s1s2 ...s9 is said to contain a 
certain motif if it contains exactly the same 
amino acid patterns. 
    Protein sequence motifs are typically 
extracted from non-gapped regions (blocks) of 
a multiple sequence alignment (Figure 2). Each 
position in the motif represents the variability 
in a column of the block. In our study, features 
were selected as follows: for each position, 
select amino acids that have at least 5% overall 
occurrence in the dataset; build features 
containing 1 or 2 selected amino acid (Figure 
2). Total number of features varies somewhat 
between different datasets because of different 
occurrence rate for individual amino acid. 



	
  

 
 
Figure 2. Feature selection for machine learning approaches 

 
Machine learning approach 
    To develop the classifier for MHC-binding 
peptides, we used machine learning algorithms 
including Naive Bayes and support vector 
machine (SVM). In both methods, we pre-
processed four groups of raw data (one for 
each MHC subtype) with feature mapping: 
each 9-mer peptide was transformed and 
represented by a high dimensional vector 
based on features selected as described above. 
    The processed data were fed into Weka to 
build models with Naive Bayes and SVM. 10-
fold cross validation using the binding and 
nonbinding datasets was performed to 
compare methods of Naive Bayes and SVM 
with different kernel functions. Accuracies 
and ROC areas were obtained from Weka 
reports and plotted for visualization. 
    We tested our four SVM models (one for 
each MHC subtype) to predict the binding 
peptides to each MHC subtype from 
experimental peptide dataset. 

 
Iterative statistical search method 
    To find significant motifs and decrease 
search space to improve algorithm efficiency, 
we developed a python program to statistically 
search the significant motifs from a peptide 
dataset based on Schwartz and Gygi (2005). 
Two frequency matrices (20 by 9 in 
dimension) of all residues at every position 
were built from binding and nonbinding 

datasets collected as above. Each row 
represents an amino acid; each column 
represents the position; value at row i and col j 
represents the probability of observing residue 
i at position j given a probability p, which was 
calculated for this residue/position pair from 
the background data set. A greedy recursive 
algorithm and pruning procedure were applied 
to search the sequence space to identify highly 
correlated residue/position pairs with 
significant binomial probability values. Thus, 
the sequence database is decomposed into a 
list of significant motifs and we can apply 
these motifs as features in our learning 
methods.  
 
Results and Discussion 
SVM-based method with ~3000 features gave 
high accuracy 
    To obtain the optimal features, we 
compared the overall accuracy with different 
number of features in 10-fold cross validation 
of Naive Bayes and SVM, i.e. motifs includes 
one or two frequent amino acids and motifs 
with one, two and three frequent amino acids, 
and with results from statistical iterative 
search  (Table 1). Our preliminary results 
showed that SVM-based method with about 
3000 features achieved accuracy close to 99%. 
Increasing features to 4,5000 motifs would not 
contribute much for accuracy but rather wastes 
memory space and increases running time. 



	
  

 
Table 1. Overall accuracy by different feature selections 
 Motif sets with 1 or 2 

amino acids (~3000) 
Motif sets with 1 to 3 
amino acids (~45,000) 

Statistical iterative  search 
generated features (~25) 

Naïve Bayes 72.0% NA 85.9% 

Support Vector 
Machine (SVM) 

99.0% 99.8% 88.7% 

 
So we decided to restrain our feature space to 
3000 in the following study. 
    For each dataset for a particular MHC 
subtype, we compared the results from 10-fold 
cross validation (Figure 3). For all MHC 
subtypes, SVM provided a high accuracy and 
area under a ROC curve close to 1. On the 
other hand, Naive Bayes algorithm gave an 
area around 0.7 for subtypes HLA-A02, HLA-
B27, HLA-B08, but achieved high value close 
to 1 for HLA-A01 subtype. Overall Naive 
Bayes achieved inferior performance 
comparing with SVM based method. 

 

 
Figure 3. ROC area in 10-fold cross validation 
using Naive Bayes and SVM for four different 
MHC subtypes 
 
MHC subtypes differentiated by peptide-
binding specificity 
    By applying our trained SVM based 
classifier on our experimental data, we were 
able to determine which peptides MHC 
subtypes can specifically bind to (Figure 4). It 
is a little unexpected that HLA-A02, HLA-
B08 and HLA-B27 subtype binds to a group 
of peptides that have no affinity to HLA-A01. 

The structural difference among these 
subtypes needs to be investigated to fully 
understand the underlying mechanism 
affecting binding affinity. 
 
Statistical iterative approach gave relatively 
high accuracy with small feature space 
    To further optimize features for a better 
efficiency and specificity, we adopted a 
statistical iterative search method to generate 
relevant motifs from training dataset. Since 
only significant motif can be generated from 
this search, we are able to decrease our 
features to a less than 30 motif set.  Using 
these features to train our SVM based 
classifier and applied on the prediction of our 
lab-generated dataset, we achieved 89% 
positive identification.  This result showed 
that the patterns identified through an iterative 
search would be useful in the optimization of 
feature selection. Due to the time limit for this 
project, we were unable to pursue further in 
optimizing feature selection and applying this 
method to binding prediction.  
 
Validation of algorithm 
    To evaluate the performance of our 
algorithm, we compared the performance of 
our approaches with NetMHC epitope 
webserver 3.2. NetMHC-3.2 used artificial 
neural network training method, which has 
been benchmarked as the best among available 
methods. It achieved about 75% confirmed 
accuracy on a large set of pathogenic viral 
proteome (Lundegaard et al. 2008). Using our 
experimental data, NetMHC predicted 64% as 
binders for four MHC subtypes, whereas our 
SVM-based method achieved 89% positive 



	
  

prediction. The reason that our approach 
showed much better performance might due to 
our using the most updated IEDB dataset 
which covering more MHC alleles thus our 
approach picks up more features overlooked 
by NetMHC.  
 

Figure 4. Binders identified by NetMHC, 
Naive Bayes, and SVM methods from lab-
generated data 
 
Future work 
    In this study, we identified better features to 
represent MHC properties and applied and 
compared Naive Bayes and SVM-based 
methods to predict and identify MHC-binding 
peptides and to further differentiate MHC 
subtypes.  
    In the future, we plan to scale up our data 
sets by importing more peptides from 
databases and test our developed method; 
optimize feature selection by integrating the 
flanking region motifs with the binding 
peptide motifs; improve motif identification 
and subtype identification algorithm by 
incorporating more MHC structural and 
functional properties combined with different 
kernel functions.  
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