Detecting Wikipedia Vandalism

Tony Jin, Lynnelle Ye, Hanzhi Zhu

1 Introduction

Since its inception in 2001, Wikipedia has become the largest encyclopedia ever created in human history.
With over 4 million articles in the English edition alone, it has become the highest-traffic educational website
on the Internet. It receives over 100,000 edits per day, which can be daunting for human editors to monitor
for vandalism, spam, or other inappropriate content. While there are existing vandalism reversion bots,
they are generally hard-coded and may not be efficient enough at detecting vandalism. Types of vandalism
include insertion of obscenities or personal attacks, deletion of valid content, and intentional introduction of
incorrect facts (which can be difficult even for a human to detect).

We will experiment with using machine learning techniques to create a vandalism detection bot. We will
consider features such as character frequencies, word attributes, attributes of the comment associated with
the revision, and the history and attributes of the editor. We will attempt to perform logistic regression and
Naive Bayes on these features, and we will also consider training an SVM with them.

2 Literature review

Automatic detection of Wikipedia vandalism has attracted significant attention in the literature, though
generally at a fairly preliminary level. Naive Bayes and SVMs have been applied with some success in [1],
[2], [5], and [6]. Potthast, Stein, and Gerling in [5] and Mola-Velasco in [6] have compiled lists of features
that are likely to be useful. We have combined ideas from their lists below.

e Character frequencies. Character distributions which deviate from expectation may indicate the
insertion of nonsense. Long sequences of identical characters and character strings with unusual com-
pressibility are similarly indicative. Other potential features include the proportion of upper-case
characters (vandals are more likely to use all-capitals or all-lowercase), the proportion of digits or
non-alphanumeric characters, character diversity in general, and so on.

e Word attributes. Unusually long words may signal nonsense, or unusual word lengths in general.
The frequency of obscene words in the edit is also an obvious choice of feature, though it may be
necessary here to distinguish between frequency and impact, the latter being the percent by which the
edit increases the proportion of obscenity in the entire article. This is just because some Wikipedia
articles, for example the ones about the words themselves, may legitimately require use of obscenity
in edits.

In a similar vein, one may wish to count first and second pronouns, colloquialisms, misspellings, and
wiki formatting elements (which vandals are unlikely to use).

More generally, comparing the words in the revision to those in the old version and to those in the
article overall is likely to be useful, since the insertion of a large number of words which do not appear
elsewhere in a long, well-established article suggests that the new content is irrelevant.

e Overall edit attributes. This includes, say, the change in size between the old and new texts. For
example, large deletions are often malicious ones.

e Comment attributes. Long comments tend to be associated with regular editing, though short or
empty comments are also common practice with well-intentioned edits. It is also possible to apply the
same process to comments as to edit text, looking for nonsense or obscenity, though these are probably
much weaker features in this context, since there is no real incentive for vandals to insert junk text
into comments that are not part of the page.

e Editor attributes. Anonymity is a strong indicator of vandalism. One may also be interested in
counting the number of past edits by the same user, and perhaps measuring the quality of past edits
by how often they were quickly reverted.

We will not attempt to use all of these features, since some should fall out of our algorithms, some are
highly correlated to the point of redundancy, and some are difficult to obtain or analyze.

3 The data

3.1 Source

We draw our data from PAN-WVC-10, created by Potthast ([4]). It consists of 32452 revisions on 28468
Wikipedia articles, each flagged as well-intentioned or malicious by a majority of voters on Amazon’s Me-
chanical Turk. The malicious edits make up 2394 of the revisions. This corpus is slightly too large for
us and its very unbalanced distribution also makes evaluating accuracy more difficult, so we pull out two
sub-datasets for some smaller experiments. The first sub-dataset consists of 700 vandalizing and 700 non-
vandalizing edits which are scrambled randomly before being split into training and testing sets. The second
sub-dataset consists of all 2394 vandalizing edits together with a matching 2394 non-vandalizing edits which
are scrambled randomly before being split into training and testing sets. We will refer to these as edits-1400
and edits-4788.

While the fact that edits-1400 and edits-4788 contain a much different distribution of vandalism from the
real-life situation could harm the performance of our classifier, in practice our algorithms seem to behave
similarly no matter what the distribution is, as long as it is the same between the training and testing sets.

3.2 Processing

The corpus records the Wikipedia page from before and after each revision. For each revision, we convert all
words into lowercase letters and store for each word the difference between the number of times it appears
in the new version from the number of times it appears in the old version. We will sometimes refer to this as
a “frequency count” of the word in the document, but it is important to remember that it can be negative
if the number of appearances of the word is reduced by the edit.

We also compute the following four non-word features: the length of the edit comment, the amount by
which the edit changed the length of the article (this can be positive or negative), whether the editor was
anonymous, and the fraction of those words added by the edit which already appeared in the original article.

4 The experiments

We now describe the algorithms we implemented and their results. It is important to note that all our
experiments on edits-1400 were performed under seven-fold hold-out cross-validation, with 200 examples
per fold. All our experiments on edits-4788 and the full dataset were performed under eight-fold hold-out
cross-validation, with 300 examples per fold in the case of edits-4788 and roughly 4500 in the case of the full
dataset.

4.1 Feature selection

Although we could use the entire vocabulary for the word features, this results in too much data and the
words which are very infrequent do not improve the classifier. We thus wish to only look at words which
appear with some moderately high frequency. We ended up with three ways of ranking the words. First,
we simply took the most frequent words in all of the edits, both vandalizing and constructive, and removed
stopwords (the top ten words). We call this feature group A. Second, we took the top 1000 most frequent
words in each class, and only used as features those which appear in only one of the top thousand lists.
We call this feature group B. Third, we took those words with the highest positive difference in frequency
between vandalizing and constructive edits. We call this feature group C.

4.2 Naive Bayes implementation and results

We performed a standard implementation of Naive Bayes on our training set. To prepare the data for Naive
Bayes, we extracted feature group B and replaced all negative frequency counts with a count of 0. Though
this is of course a significant convenience, we believe it is also theoretically justified. This is simply because
we do not generally expect the content of the old version of a document to inform our judgment about the
legitimacy of a particular edit on its own, independently from how it compares to the new version. There is no
particular reason a certain word should be removed far more often by vandals than non-vandals, while there
are many reasons it might be added far more often by vandals than non-vandals. (Actually, this is probably
not strictly true. It is likely that the removal of some words corresponds to politically- or ideologically-
motivated vandalism. But we will assume that this is a fairly rare or at least localized occurrence which can
be addressed through other means.)

Tabel 1 gives the performance of Naive Bayes under eight-fold cross-validation using various numbers of
the top word features. Note that as the number of features increases, accuracy and recall increase somewhat
while precision essentially doesn’t change. Of course, the most important point to note here is that these
results are all much better than chance.

Number of features | Overall accuracy | Precision | Recall
100 0.6696 0.8001 0.4368
200 0.6904 0.8083 | 0.4843
450 0.7092 0.8093 | 0.5339
900 0.7137 0.8027 | 0.5548

Table 1: Performance of Naive Bayes with various levels of feature selection.

4.3 Support Vector Machine implementation and results

We ran LIBLINEAR on several different versions of our training set, with wildly varying and sometimes
rather strange results. On edits-1400, with no preprocessing to remove negative frequencies (since it is no
difficulty for the SVM to handle them and they cannot hurt), we get very reasonable accuracies in the
60 — 70% range, increasing somewhat as the number of features increases, as shown in Figure 1. The features
are drawn from feature group C.

0.5 L L L L L L L L
1 2 3 4 [} E 7 g 9 10

Figure 1: Accuracy vs. number of features for LIBLINEAR. The horizontal axis is in hundreds of features
used.

The precision-recall curve for varying numbers of features is shown in Figure 2. Note that in general,

LIBLINEAR precision is much higher than recall, with numbers around 80% and 30% respectively. This is
generally good news in our context, because as part of an army of vandal-fighting bots and humans, it is far
more important for a particular bot to avoid deleting legitimate edits than for it to find all the illegitimate
ones.

0,83 T T T

0,881 i

0,87 i

0,86 i

0,851 i

0,84 - 1

0,811 i

Figure 2: Precision-recall curve for LIBLINEAR, with the number of features ranging from 100 to 1000.

Unfortunately, we were not able to replicate these results on edits-4788. Table 2 shows the behavior of
LIBLINEAR on edits-4788.

Number of features | Overall accuracy | Precision | Recall
100 6117 0.6651 0.523
200 0.62 0.6476 0.4909
450 0.6038 0.584 0.7796
900 0.6521 0.6836 0.6107
1000 0.68 0.6744 0.7073

Table 2: Performance of LIBLINEAR with various levels of feature selection.

We see that while LIBLINEAR continues to do significantly better than chance in all cases, its specific
performance as the number of features change is a little mysterious.

We also tried attaching the four non-word features described in Section 3.2 to the training data for
LIBLINEAR, together with our 1000 word features. The result on edits-4788 was an accuracy of 69.87%
with 68.95% precision and 72.37% recall. This is a little better than the numbers in Tabel 2, but not very
much.

4.4 Logistic regression implementation and results

Finally, we implemented logistic regression using solely the four non-word features described in Section 3.2,
reasoning that the dimensional blow-up caused by including the words themselves would slow down the
algorithm to impractical levels. Surprisingly, this gave us our most consistently good results. On edits-4788,
the regression had an accuracy rate of 79.42% with a precision of 75.94% and a recall of 85.92%. The success
of logistic regression can be attributed to the usefulness of the features in predicting vandalism, in particular
whether the user is anonymous (logged-in users are highly unlikely to be vandals), the length of the comment
(many vandals do not both filling in a comment), and the change in document size (removal of large portions
of text is probably vandalism).

4.5 Tests on the entire corpus

We then ran Naive Bayes and SVM on the entire corpus with eight-fold cross-validation. Naive Bayes was
run on the non-negative frequency counts only. The SVM was run on four different matrices, depending
on whether the frequency counts included negative numbers or not, and whether the matrix included the
extracted features or was limited to just the frequency counts. The results are summarized below:

Algorithm Accuracy | Precision | Recall

Naive Bayes 0.9407 0.7336 0.3118

SVM (w/o negative, w/o features) 0.5345 0.1000 | 0.6645
SVM (w/ negative, w/o features) 0.6934 0.1524 | 0.6701
SVM (w/o negative, w/ features) 0.9069 0.4332 | 0.4046
SVM (w/ negative, w/ features) 0.8915 0.3266 | 0.4048

Table 3: Performance of various algorithms on the entire corpus.

Accuracy, precision, recall are averaged over the 8 folds. It appears that Naive Bayes performs better
than the SVM. A possible reason for this is that only 7% of the corpus is vandalism, so the prior in Naive
Bayes makes false positives less likely. Additionally, running the SVM over large amounts of data may result
in overfitting, as the decision boundary attempts to accomodate every single point.

5 Discussion

We found that Naive Bayes, LIBLINEAR, and logistic regression all classify edits as well-intentioned or
malicious with success probability much better than chance on the various subsets of the PAN-WVC-10
corpus we considered. Logistic regression on our four non-word features had the highest overall accuracy
rate, but was impractically slow even with a stripped-down dataset and could probably not be used in
practice. Whether Naive Bayes or LIBLINEAR did better depended on the specific makeup of the training
and testing data. LIBLINEAR did well on a small balanced dataset of 1400 edits, with a predictable small
loss in precision and noticeable gain in recall as the number of features went up, but behaved more strangely
(though still much better than chance) on larger datasets, perhaps because of overfitting. Naive Bayes
remained reasonably well-behaved on all scales of data.

References

[1] Belani, Amit. “Vandalism detection in Wikipedia: a bag-of-words classifier approach.” arXiv preprint
arXiv:1001.0700 (2010).

[2] Chin, Si-Chi, W. Nick Street, Padmini Srinivasan, and David Eichmann. “Detecting Wikipedia vandal-
ism with active learning and statistical language models.” Proceedings of the 4th workshop on Informa-
tion credibility. ACM, 2010.

[3] Mola-Velasco, Santiago M. “Wikipedia vandalism detection.” Proceedings of the 20th international
conference companion on World wide web. ACM, 2011.

[4] Potthast, Martin. Crowdsourcing a Wikipedia Vandalism Corpus. In Hsin-Hsi Chen, Efthimis N.
Efthimiadis, Jaques Savoy, Fabio Crestani, and Stéphane Marchand-Maillet, editors, 33rd International
ACM Conference on Research and Development in Information Retrieval (SIGIR 10), pages 789-790,
July 2010. ACM. ISBN 978-1-4503-0153-4.

[5] Potthast, Martin, Benno Stein, and Robert Gerling. “Automatic vandalism detection in Wikipedia.”
Advances in Information Retrieval (2008): 663-668.

[6] Velasco, Santiago M. Mola. “Wikipedia vandalism detection through machine learning: Feature review
and new proposals.” Lab Report for PAN-CLEF 2010 (2010).

